English

∫ E X ( Sin 4 X − 4 1 − Cos 4 X ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
Sum

Solution

\[\text{ Let I } = \int e^x \left[ \frac{\sin4x - 4}{1 - \cos4x} \right]dx\]

\[ = \int e^x \left[ \frac{2\sin2x \cos2x}{2 \sin^2 (2x)} - \frac{4}{2 \sin^2 2x} \right]dx\]

\[ = \int e^x \left[ \cot(2x) - \text{ 2
}{cosec}^2 (2x) \right]dx\]

\[\text{ Here,} f(x) = \text
{ cot } (2x)\]

\[ \Rightarrow f'(x) = - \text{ 2 }{cosec}^2 (2x)\]

\[\text{ Put e}^x f(x) = t\]

\[\text{ let e }^x \text{ cot }( 2x) = t\]

\[\text{ Diff  both  sides w . r . t x}\]

\[ e^x \text{ cot (2x) } + e^x \times \left[ - \text{ 2  } {cosec}^\text{ 2 }(2x) \right] = \frac{dt}{dx}\]

\[ \Rightarrow e^x \left[ \cot(2x) -\text{  2 } {cosec}^\text{ 2 }(2x) \right]dx = dt\]

\[ \therefore \int e^x \left[ \cot 2x - \text{ 2 }{cosec}^2 \text{ 2x } \right]dx = \int dt\]

\[ \Rightarrow I = t + C\]

\[ = e^x \cot\left( \text{ 2x } \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.26 [Page 143]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.26 | Q 11 | Page 143

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{\sin \left( x - \frac{\pi}{6} \right) \sin \left( x + \frac{\pi}{6} \right)} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{1}{a^2 x^2 + b^2} dx\]

` ∫  { x^2 dx}/{x^6 - a^6} dx `

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\frac{1}{\left( \sin x - 2 \cos x \right) \left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{\sin^2 x}{\cos^6 x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×