Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^x \left[ \frac{\sin4x - 4}{1 - \cos4x} \right]dx\]
\[ = \int e^x \left[ \frac{2\sin2x \cos2x}{2 \sin^2 (2x)} - \frac{4}{2 \sin^2 2x} \right]dx\]
\[ = \int e^x \left[ \cot(2x) - \text{ 2
}{cosec}^2 (2x) \right]dx\]
\[\text{ Here,} f(x) = \text
{ cot } (2x)\]
\[ \Rightarrow f'(x) = - \text{ 2 }{cosec}^2 (2x)\]
\[\text{ Put e}^x f(x) = t\]
\[\text{ let e }^x \text{ cot }( 2x) = t\]
\[\text{ Diff both sides w . r . t x}\]
\[ e^x \text{ cot (2x) } + e^x \times \left[ - \text{ 2 } {cosec}^\text{ 2 }(2x) \right] = \frac{dt}{dx}\]
\[ \Rightarrow e^x \left[ \cot(2x) -\text{ 2 } {cosec}^\text{ 2 }(2x) \right]dx = dt\]
\[ \therefore \int e^x \left[ \cot 2x - \text{ 2 }{cosec}^2 \text{ 2x } \right]dx = \int dt\]
\[ \Rightarrow I = t + C\]
\[ = e^x \cot\left( \text{ 2x } \right) + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ sin x \sqrt (1-cos 2x) dx `
` ∫ {sec x "cosec " x}/{log ( tan x) }` dx
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]