English

∫ ( X + 1 ) 2 E X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int \left( x + 1 \right)^2 e^x \text{ dx }\]
Sum

Solution

\[\int \left( x + 1 \right)^2_I {e_{II}^x} \text{ dx }\]
\[ = \left( x + 1 \right)^2 \int e^x dx - \int\left\{ \frac{d}{dx} \left( x + 1 \right)^2 \int e^x dx \right\}dx\]
\[ = \left( x + 1 \right)^2 \cdot e^x - \int2 \left( x + 1 \right) \cdot e^x dx\]
\[ = \left( x + 1 \right)^2 e^x - 2\int \text{ x}_I {\text{ e}_{II}^x} \text{ dx} - 2\int e^x dx\]
\[ = \left( x + 1 \right)^2 e^x - 2 \left[ x \cdot e^x - \int1 \cdot e^x \text{ dx}\right] - 2 e^x \]
\[ = \left( x + 1 \right)^2 e^x - \text{ 2x e}^x + 2 e^x - 2 e^x + C\]
\[ = \left[ \left( x + 1 \right)^2 - 2x \right] e^x + C\]
\[ = \left( x^2 + 1 \right) e^x + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 96 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫    cos  mx  cos  nx  dx `

 


\[\int\frac{1}{x (3 + \log x)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×