Advertisements
Advertisements
Question
Solution
\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]
\[ = \int\left( 3 x^1 \cdot x^\frac{1}{2} + 4 x^\frac{1}{2} + 5 \right)dx\]
\[ = 3\int x^\frac{3}{2} dx + 4\int x^\frac{1}{2} dx + 5 ∫dx\]
\[ = 3\left[ \frac{x^\frac{3}{2} + 1}{\frac{3}{2} + 1} \right] + 4\left[ \frac{x^\frac{1}{2} + 1}{\frac{1}{2} + 1} \right] + 5x + C\]
\[ = 3 \times \frac{2}{5} x^\frac{5}{2} + 4 \times \frac{2}{3} x^\frac{3}{2} + 5x + C\]
\[ = \frac{6}{5} x^\frac{5}{2} + \frac{8}{3} x^\frac{3}{2} + 5x + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]