Advertisements
Advertisements
Question
\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]
Sum
Solution
\[\text{ Let I} = \int\frac{1}{\sqrt{3 - 2x - x^2}}dx\]
\[ = \int\frac{1}{\sqrt{3 - \left( x^2 + 2x + 1 - 1 \right)}}dx\]
\[ = \int\frac{1}{\sqrt{4 - \left( x + 1 \right)^2}}dx\]
\[\text{ Putting} \left( x + 1 \right) = t\]
\[ \Rightarrow dx = dt\]
\[ \therefore I = \int\frac{dt}{\sqrt{2^2 - t^2}}\]
\[ = \sin^{- 1} \left( \frac{t}{2} \right) + C .................\left[ \because \int \frac{1}{\sqrt{a^2 - x^2}}dx = \sin^{- 1} \frac{x}{a} + C \right]\]
\[ = \sin^{- 1} \left( \frac{x + 1}{2} \right) + C .....................\left[ \because t = \left( x + 1 \right) \right]\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\left( 2^x + \frac{5}{x} - \frac{1}{x^{1/3}} \right)dx\]
\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\]
\[\int \left( 3x + 4 \right)^2 dx\]
\[\int\frac{\cos x}{1 + \cos x} dx\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{1}{ x \text{log x } \text{log }\left( \text{log x }\right)} dx\]
\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]
\[\int \sin^5\text{ x }\text{cos x dx}\]
\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int x^2 \sqrt{x + 2} \text{ dx }\]
` ∫ tan^3 x sec^2 x dx `
\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]
\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]
\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 2x - 1}}\text{ dx }\]
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]
\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]
\[\int\sqrt{2x - x^2} \text{ dx}\]
\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]
\[\int \text{cosec}^2 x \text{ cos}^2 \text{ 2x dx} \]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]
\[\int\frac{1}{4 x^2 + 4x + 5} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sec^{- 1} \sqrt{x}\ dx\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`