English

∫ X + 1 X 2 + 4 X + 5 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]
Sum

Solution

\[\text{ Let  I } = \int\frac{\left( x + 1 \right)}{x^2 + 4x + 5}dx\]

\[\text{ and   let} \left( x + 1 \right) = A\frac{d}{dx}\left( x^2 + 4x + 5 \right) + B\]

\[ \Rightarrow x + 1 = A \left( 2x + 4 \right) + B\]

\[ \Rightarrow x + 1 = \left( 2A \right)x + 4A + B\]

\[\text{Equating the coefficients of like terms}\]

\[2A = 1\]

\[ \Rightarrow A = \frac{1}{2}\]

\[\text{ and }\ 4A + B = 1\]

\[ \Rightarrow 4 \times \frac{1}{2} + B = 1\]

\[ \Rightarrow B = - 1\]

\[ \therefore \left( x + 1 \right) = \frac{1}{2} \left( 2x + 4 \right) - 1\]

\[ \therefore I = \int\left[ \frac{\frac{1}{2}\left( 2x + 4 \right) - 1}{x^2 + 4x + 5} \right]dx\]

\[ = \frac{1}{2}\int\frac{\left( 2x + 4 \right)}{x^2 + 4x + 5}dx - \int\frac{1}{x^2 + 4x + 5}dx\]

\[\text{ Putting  x}^2 + 4x + 5 = t\]

\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]

\[ \therefore I = \frac{1}{2}\int\frac{1}{t}dt - \int\frac{1}{x^2 + 4x + 4 + 1}dx\]

\[ = \frac{1}{2}\int\frac{dt}{t} - \int\frac{1}{\left( x + 2 \right)^2 + 1^2}dx \]

\[ = \frac{1}{2} \text{ ln } \left| t \right| - \tan^{- 1} \left( \frac{x + 2}{1} \right) + C............. \left[ \because \int\frac{1}{x^2 + a^2}dx = \frac{1}{a} \tan^{- 1} \frac{x}{a} + C \right]\]

\[ = \frac{1}{2} \text{ ln }\left| x^2 + 4x + 5 \right| - \tan^{- 1} \left( x + 2 \right) + C ...................\left[ \because t = x^2 + 4x + 5 \right]\]

 

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 51 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

\[\int     \text{sin}^2  \left( 2x + 5 \right)    \text{dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{1 + x - x^2}  \text{ dx }\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]

\[\int\frac{1}{1 + \tan x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{\log \left( \log x \right)}{x} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×