English

∫ 1 1 + Tan X D X = - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + \tan x} dx =\]

Options

  • loge (x + sin x) + C

  • loge (sin x + cos x) + C

  • \[2 \sec^2 \frac{x}{2} + C\]

  • \[\frac{1}{2}\] [x + log (sin x + cos x)] + C

MCQ

Solution

\[\frac{1}{2}\]  [x + ln (sin x + cos x)] + C

 

\[\text{Let }I = \int\frac{1}{1 + \tan x}dx\]
\[ = \int\frac{1}{1 + \frac{\sin x}{\cos x}}dx\]
\[ = \int\frac{\cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\frac{2 \cos x}{\cos x + \sin x}dx\]
\[ = \frac{1}{2}\int\left[ \frac{\left( \cos x + \sin x \right) + \left( \cos x - \sin x \right)}{\left( \cos x + \sin x \right)} \right]dx\]
\[ = \frac{1}{2}\int\left( \frac{\cos x + \sin x}{\cos x + \sin x} \right)dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[ = \frac{1}{2}\int dx + \frac{1}{2}\int\left( \frac{\cos x - \sin x}{\cos x + \sin x} \right)dx\]
\[\text{Putting }\sin x + \cos x = t\]
\[ \Rightarrow \left( \cos x - \sin x \right) dx = dt\]
\[ \therefore I = \frac{1}{2}\int dx + \frac{1}{2}\int\frac{dt}{t}\]
\[ = \frac{x}{2} + \frac{1}{2}\ln \left| t \right| + C\]
\[ = \frac{x}{2} + \frac{1}{2} \ln \left| \cos x + \sin x \right| + C .............\left( \because t = \sin x + \cos x \right)\]
\[ = \frac{1}{2}\left[ x + \ln \left( \sin x + \cos x \right) \right] + C\]

shaalaa.com

Notes

Generally here book is taking loge x  as log x . So we are writing ln x or loge xinstead log only .

  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - MCQ [Page 200]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
MCQ | Q 11 | Page 200

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

 
\[\int\frac{\cos x}{1 - \cos x} \text{dx }or \int\frac{\cot x}{\text{cosec         } {x }- \cot x} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

` ∫      tan^5    x   dx `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cot^5 x  \text{ dx }\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{3 + 4 \cot x} dx\]

\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2 - 3x + 1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×