English

∫ 1 1 + X + X 2 + X 3 D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{1 + x + x^2 + x^3} dx\]
Sum

Solution

We have,

\[I = \int\frac{dx}{1 + x + x^2 + x^3}\]

\[ = \int\frac{dx}{\left( 1 + x \right) + x^2 \left( 1 + x \right)}\]

\[ = \int\frac{dx}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[\text{Let }\frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A}{x + 1} + \frac{Bx + C}{x^2 + 1}\]

\[ \Rightarrow \frac{1}{\left( x + 1 \right) \left( x^2 + 1 \right)} = \frac{A \left( x^2 + 1 \right) + \left( Bx + C \right) \left( x + 1 \right)}{\left( x + 1 \right) \left( x^2 + 1 \right)}\]

\[ \Rightarrow 1 = A \left( x^2 + 1 \right) + B x^2 + Bx + Cx + C\]

\[ \Rightarrow 1 = \left( A + B \right) x^2 + \left( B + C \right) x + \left( A + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 0 . . . . . \left( 1 \right)\]

\[B + C = 0 . . . . . \left( 2 \right)\]

\[A + C = 1 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{1}{2}\]

\[B = - \frac{1}{2}\]

\[C = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} + \frac{1}{2}\int\left( \frac{- x + 1}{x^2 + 1} \right) dx\]

\[ = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{2}\int\frac{x dx}{x^2 + 1} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[\text{Let }x^2 + 1 = t\]

\[ \Rightarrow 2x dx = dt\]

\[ \Rightarrow x dx = \frac{dt}{2}\]

\[ \therefore I = \frac{1}{2}\int\frac{dx}{x + 1} - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{2}\int\frac{dx}{x^2 + 1^2}\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| t \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

\[ = \frac{1}{2} \log \left| x + 1 \right| - \frac{1}{4} \log \left| x^2 + 1 \right| + \frac{1}{2} \tan^{- 1} \left( x \right) + C'\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 38 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( x^e + e^x + e^e \right) dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

` ∫  1/ {1+ cos   3x}  ` dx


\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + x + 5}{3x + 2} dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{1}{\sin^4 x \cos^2 x} dx\]

\[\int\frac{1}{\sin x \cos^3 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

\[\int\frac{2 \tan x + 3}{3 \tan x + 4} \text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int \tan^5 x\ dx\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×