Advertisements
Advertisements
Question
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
Sum
Solution
\[\int \left( \frac{x^{- \frac{1}{3}} + \sqrt{x} + 2}{x^\frac{1}{3}} \right)dx\]
\[ = \int \left( \frac{x^{- \frac{1}{3}}}{x^\frac{1}{3}} + \frac{x^\frac{1}{2}}{x^\frac{1}{3}} + \frac{2}{x^\frac{1}{3}} \right)dx\]
\[ = \int\left( x^{- \frac{2}{3}} + x^\frac{1}{6} + 2 x^{- \frac{1}{3}} \right)dx\]
\[ = \left[ \frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1} + \frac{x^\frac{1}{6} + 1}{\frac{1}{6} + 1} + 2\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right]\]
\[ = \left[ \frac{x^\frac{1}{3}}{\frac{1}{3}} + \frac{x^\frac{7}{6}}{\frac{7}{6}} + 3 x^\frac{2}{3} \right] + C\]
\[ = 3 x^\frac{1}{3} + \frac{6}{7} x^\frac{7}{6} + 3 x^\frac{2}{3} + C\]
shaalaa.com
Is there an error in this question or solution?
APPEARS IN
RELATED QUESTIONS
\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]
` ∫ 1/ {1+ cos 3x} ` dx
\[\int \left( e^x + 1 \right)^2 e^x dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
` ∫ cos mx cos nx dx `
\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]
\[\int\frac{a}{b + c e^x} dx\]
\[\int\frac{\sec^2 \sqrt{x}}{\sqrt{x}} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]
\[\int \cot^5 x \text{ dx }\]
\[\int \sin^4 x \cos^3 x \text{ dx }\]
\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]
\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]
` ∫ \sqrt{"cosec x"- 1} dx `
\[\int\frac{x^2}{x^2 + 7x + 10} dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int \left( \log x \right)^2 \cdot x\ dx\]
\[\int x \sin x \cos 2x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]
\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]
\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{ dx }\]
\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]
\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]
\[\int\frac{2x + 1}{\left( x - 2 \right) \left( x - 3 \right)} dx\]
\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]
\[\int\frac{e^x \left( 1 + x \right)}{\cos^2 \left( x e^x \right)} dx =\]
\[\int\frac{\sin x}{\cos 2x} \text{ dx }\]
\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]