Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \left( \frac{x^{- \frac{1}{3}} + \sqrt{x} + 2}{x^\frac{1}{3}} \right)dx\]
\[ = \int \left( \frac{x^{- \frac{1}{3}}}{x^\frac{1}{3}} + \frac{x^\frac{1}{2}}{x^\frac{1}{3}} + \frac{2}{x^\frac{1}{3}} \right)dx\]
\[ = \int\left( x^{- \frac{2}{3}} + x^\frac{1}{6} + 2 x^{- \frac{1}{3}} \right)dx\]
\[ = \left[ \frac{x^{- \frac{2}{3} + 1}}{- \frac{2}{3} + 1} + \frac{x^\frac{1}{6} + 1}{\frac{1}{6} + 1} + 2\frac{x^{- \frac{1}{3} + 1}}{- \frac{1}{3} + 1} \right]\]
\[ = \left[ \frac{x^\frac{1}{3}}{\frac{1}{3}} + \frac{x^\frac{7}{6}}{\frac{7}{6}} + 3 x^\frac{2}{3} \right] + C\]
\[ = 3 x^\frac{1}{3} + \frac{6}{7} x^\frac{7}{6} + 3 x^\frac{2}{3} + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ x^2 + e^{\log x}+ \left( \frac{e}{2} \right)^x \right\} dx\]
\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]
Evaluate the following integral:
If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]