Advertisements
Advertisements
प्रश्न
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
योग
उत्तर
\[\int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
\[\text{Let x - 1 }= t\]
\[ \Rightarrow x = t + 1\]
\[ \Rightarrow 1 = \frac{dt}{dx}\]
\[Now, \int\left[ \frac{2x - 1}{\left( x - 1 \right)^2} \right]dx\]
\[ = \int\left[ \frac{2\left( t + 1 \right) - t}{t^2} \right]\text{ dt }\]
\[ = \int\left( \frac{2t + 1}{t^2} \right)\text{ dt }\]
\[ = 2\int\frac{dt}{t} + \int t^{- 2} \text{ dt }\]
\[ = \text{ 2 log }\left| t \right| + \frac{t^{- 2 + 1}}{- 2 + 1} + C\]
\[ =\text{ 2 log }\left( x - 1 \right) - \frac{1}{x - 1} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]
Integrate the following integrals:
\[\int\text { sin x cos 2x sin 3x dx}\]
\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]
\[\int\frac{1}{x^2 \left( x^4 + 1 \right)^{3/4}} dx\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
` ∫ tan^5 x sec ^4 x dx `
Evaluate the following integrals:
\[\int\cos\left\{ 2 \cot^{- 1} \sqrt{\frac{1 + x}{1 - x}} \right\}dx\]
\[\int\frac{1}{\sqrt{2x - x^2}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]
\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]
\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]
\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{ dx}\]
\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]
\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]
\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]
\[\int x \text{ sin 2x dx }\]
\[\int\frac{\log \left( \log x \right)}{x} dx\]
\[\int x \sin x \cos 2x\ dx\]
\[\int e^x \left( \cos x - \sin x \right) dx\]
\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]
Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]
\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 9}} \text{ dx}\]
\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\sqrt{a^2 + x^2} \text{ dx }\]
\[\int\sqrt{1 + 2x - 3 x^2}\text{ dx } \]