हिंदी

∫ X ( X − 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]
योग

उत्तर

We have,

\[I = \int\frac{x dx}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[\text{Let }\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x - 1} + \frac{B}{\left( x - 1 \right)^2} + \frac{C}{x + 2}\]

\[ \Rightarrow \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{A \left( x - 1 \right) \left( x + 2 \right) + B \left( x + 2 \right) + C \left( x - 1 \right)^2}{\left( x - 1 \right)^2 \left( x + 2 \right)}\]

\[ \Rightarrow x = A \left( x^2 + 2x - x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = A \left( x^2 + x - 2 \right) + B \left( x + 2 \right) + C \left( x^2 - 2x + 1 \right)\]

\[ \Rightarrow x = \left( A + C \right) x^2 + \left( A + B - 2C \right) x + \left( - 2A + 2B + C \right)\]

\[\text{Equating coefficients of like terms}\]

\[A + C = 0 .................(1)\]

\[A + B - 2C = 1 ..................(2)\]

\[ - 2A + 2B + C = 0 .....................(3)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = \frac{2}{9}, B = \frac{1}{3}\text{ and }C = - \frac{2}{9}\]

\[ \therefore \frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} = \frac{2}{9 \left( x - 1 \right)} + \frac{1}{3 \left( x - 1 \right)^2} - \frac{2}{9 \left( x + 2 \right)}\]

\[ \Rightarrow I = \frac{2}{9}\int\frac{dx}{x - 1} + \frac{1}{3}\int\frac{dx}{\left( x - 1 \right)^2} - \frac{2}{9}\int\frac{dx}{x + 2}\]

\[ = \frac{2}{9} \log \left| x - 1 \right| + \frac{1}{3} \times \left( \frac{- 1}{x - 1} \right) - \frac{2}{9} \log \left| x + 2 \right| + C\]

\[ = \frac{2}{9}\log \left| \frac{x - 1}{x + 2} \right| - \frac{1}{3 \left( x - 1 \right)} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 30 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{\text{sin} \left( x - a \right)}{\text{sin}\left( x - b \right)} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{8 + 3x - x^2}} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6}\text{  dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x}\]

\[\int \cot^5 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×