हिंदी

∫ 1 X ( X 4 − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{dx}{x\left( x^4 - 1 \right)}\]
\[ = \int \frac{x^3 dx}{x^4 \left( x^4 - 1 \right)}\]
\[\text{Putting }x^4 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ \therefore I = \frac{1}{4}\int\frac{dt}{t\left( t - 1 \right)}\]
\[\text{Let }\frac{1}{t\left( t - 1 \right)} = \frac{A}{t} + \frac{B}{t - 1}\]
\[ \Rightarrow \frac{1}{t\left( t - 1 \right)} = \frac{A\left( t - 1 \right) + B t}{t\left( t - 1 \right)}\]
\[ \Rightarrow 1 = A\left( t - 1 \right) + Bt\]
\[\text{Putting }t - 1 = 0\]
\[ \Rightarrow t = 1\]
\[ \therefore 1 = A \times 0 + B\left( 1 \right)\]
\[ \Rightarrow B = 1\]
\[\text{Putting }t = 0\]
\[ \therefore 1 = A\left( 0 - 1 \right) + B \times 0\]
\[ \Rightarrow A = - 1\]
\[ \therefore I = - \frac{1}{4}\int\frac{dt}{t} + \frac{1}{4}\int\frac{dt}{t - 1}\]
\[ = - \frac{1}{4}\log \left| t \right| + \frac{1}{4}\log \left| t - 1 \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{t - 1}{t} \right| + C\]
\[ = \frac{1}{4}\log \left| \frac{x^4 - 1}{x^4} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 54 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos 2x} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  tan^5 x   sec ^4 x   dx `

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{dx}{e^x + e^{- x}}\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 5 \cos^2 x} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int e^\sqrt{x} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \tan^{- 1} \left( \frac{3x - x^3}{1 - 3 x^2} \right) dx\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int e^x \left( \log x + \frac{1}{x^2} \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int \tan^4 x\ dx\]

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×