हिंदी

∫ 1 ( X 2 + 1 ) ( X 2 + 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]
योग

उत्तर

We have,
\[I = \int \frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}\]
\[\text{Putting }x^2 = t\]
Then,
\[\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[\text{Let }\frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A}{t + 1} + \frac{B}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{A\left( t + 2 \right) + B\left( t + 1 \right)}{\left( t + 1 \right) \left( t + 2 \right)}\]
\[ \Rightarrow 1 = A\left( t + 2 \right) + B\left( t + 1 \right)\]
\[\text{Putting }t + 2 = 0\]
\[ \Rightarrow t = - 2\]
\[ \therefore 1 = A \times 0 + B\left( - 1 \right)\]
\[ \Rightarrow B = - 1\]
\[\text{Putting }t + 1 = 0\]
\[ \Rightarrow t = - 1\]
\[ \therefore 1 = A\left( - 1 + 2 \right) + B \times 0\]
\[ \Rightarrow A = 1\]
\[ \therefore \frac{1}{\left( t + 1 \right) \left( t + 2 \right)} = \frac{1}{t + 1} - \frac{1}{t + 2}\]
\[ \Rightarrow \frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} = \frac{1}{x^2 + 1} - \frac{1}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ \therefore I = \int \frac{dx}{x^2 + 1^2} - \int\frac{dx}{x^2 + \left( \sqrt{2} \right)^2}\]
\[ = \tan^{- 1} \left( x \right) - \frac{1}{\sqrt{2}} \tan^{- 1} \left( \frac{x}{\sqrt{2}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 53 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\left( \sec^2  x + {cosec}^2  x \right)  dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \sin^2\text{ b x dx}\]

` ∫   cos  3x   cos  4x` dx  

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \cos^7 x \text{ dx  } \]

Evaluate the following integrals:
\[\int\frac{x^2}{\left( a^2 - x^2 \right)^{3/2}}dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{  dx }\]

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{1}{x^4 + x^2 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int x^3 \left( \log x \right)^2\text{  dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 2 \right) \left( x^2 + 5 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×