हिंदी

∫ ( 2 X − 5 ) √ 2 + 3 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]
योग

उत्तर

\[\text{ Let I }= \int \left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Also,} 2x - 5 = \lambda\frac{d}{dx}\left( 2 + 3x - x^2 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \lambda\left( - 2x + 3 \right) + \mu\]

\[ \Rightarrow 2x - 5 = \left( - 2\lambda \right)x + 3\lambda + \mu\]

\[\text{Equating coeffieicents of like terms}\]

\[ - 2\lambda = 2\]

\[ \Rightarrow \lambda = - 1\]

\[\text{ And }\]

\[3\lambda + \mu = - 5\]

\[ \Rightarrow 3\left( - 1 \right) + \mu = - 5\]

\[ \Rightarrow \mu = - 5 + 3\]

\[ \Rightarrow \mu = - 2\]

\[ \therefore 2x - 5 = - 1\left( - 2x + 3 \right) - 2\]

\[\text{ Hence,} I = \int \left[ - \left( - 2x + 3 \right) - 2 \right] \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - \int \left( - 2x + 3 \right) \sqrt{2 + 3x - x^2}dx - 2\int\sqrt{2 + 3x - x^2} \text{  dx }\]

\[ = - I_1 - 2 I_2 . . . . . \left( 1 \right)\]

\[ I_1 = \int\left( - 2x + 3 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\text{ Let } 2 + 3x - x^2 = t\]

\[ \Rightarrow \left( - 2x + 3 \right)dx = dt\]

\[ \therefore I_1 = \int t^\frac{1}{2} dt\]

\[ = \frac{t^\frac{1}{2} + 1}{\frac{1}{2} + 1}\]

\[ = \frac{2}{3} t^\frac{3}{2} \]

\[ = \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} . . . . . \left( 2 \right)\]

\[\text{ And I}_2 = \int \sqrt{2 + 3x - x^2} \text{  dx }\]

\[ I_2 = \int \sqrt{2 - \left( x^2 - 3x \right)} \text{  dx }\]

\[ = \int \sqrt{2 - \left[ x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 \right]} dx\]

\[ = \int\sqrt{2 + \frac{9}{4} - \left( x - \frac{3}{2} \right)^2} dx\]

\[ = \int \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} \text{  dx }\]

\[ = \frac{x - \frac{3}{2}}{2} \sqrt{\left( \frac{\sqrt{17}}{2} \right)^2 - \left( x - \frac{3}{2} \right)^2} + \frac{\left( \frac{\sqrt{17}}{2} \right)^2}{2} \sin^{- 1} \left( \frac{x - \frac{3}{2}}{\frac{\sqrt{17}}{2}} \right)\]

\[ = \frac{2x - 3}{4}\sqrt{2 + 3x - x^2} + \frac{17}{8} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) . . . . . \left( 3 \right)\]

\[\text{ From eq }\left( 1 \right), \left( 2 \right) \text{ and } \left( 3 \right) \text{ we have}\]

\[I = - \frac{2}{3} \left( 2 + 3x - x^2 \right)^\frac{3}{2} - \frac{\left( 2x - 3 \right)}{2}\sqrt{2 + 3x - x^2} - \frac{17}{4} \sin^{- 1} \left( \frac{2x - 3}{\sqrt{17}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 3 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{\cos^2 x - \sin^2 x}{\sqrt{1} + \cos 4x} dx\]

\[\int \cos^2 \text{nx dx}\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int x^3 \sin x^4 dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{x}{x^4 + 2 x^2 + 3} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^2 \left( x^4 + 4 \right)}{x^2 + 4} \text{ dx }\]

\[\int\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\left( x \tan^{- 1} x \right)}{\left( 1 + x^2 \right)^{3/2}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int e^x \cdot \frac{\sqrt{1 - x^2} \sin^{- 1} x + 1}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

\[\int\frac{1}{1 + \tan x} dx =\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int x\sqrt{2x + 3} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×