Advertisements
Advertisements
प्रश्न
\[\int x^3 \sin x^4 dx\]
योग
उत्तर
\[\int x^3 \cdot \sin x^4 dx\]
\[\text{Let x}^4 = t\]
\[ \Rightarrow 4 x^3 = \frac{dt}{dx}\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[Now, \int x^3 \cdot \text{sin x^4} \text{dx}\]
\[ = \frac{1}{4}\int\text{sin t dt}\]
\[ = \frac{1}{4}\left[ - \cos t \right] + C\]
\[ = \frac{1}{4}\left[ - \cos x^4 \right] + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]
Integrate the following integrals:
\[\int\text{sin 2x sin 4x sin 6x dx} \]
\[\int\frac{\text{sin} \left( x - \alpha \right)}{\text{sin }\left( x + \alpha \right)} dx\]
\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1} \text{dx}\]
\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
` ∫ tan^5 x sec ^4 x dx `
` ∫ sec^6 x tan x dx `
\[\int\frac{1}{\sin x \cos^3 x} dx\]
\[\int\frac{1}{a^2 - b^2 x^2} dx\]
\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]
\[\int\frac{\left( 3 \sin x - 2 \right) \cos x}{5 - \cos^2 x - 4 \sin x} dx\]
\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int2 x^3 e^{x^2} dx\]
\[\int x \sin x \cos x\ dx\]
\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]
\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]
\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]
\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]
\[\int \sin^3 \sqrt{x}\ dx\]
\[\int x \sin^3 x\ dx\]
\[\int\frac{5x}{\left( x + 1 \right) \left( x^2 - 4 \right)} dx\]
\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]
\[\int\frac{1}{x^4 - 1} dx\]
\[\int\frac{1}{1 + \tan x} dx =\]
\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
\[\int\text{ cos x cos 2x cos 3x dx}\]
\[\int\frac{\sin x}{\sqrt{1 + \sin x}} dx\]
\[\int\frac{1}{2 + \cos x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]
\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]
\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]
\[\int\frac{\cos^7 x}{\sin x} dx\]