हिंदी

∫ 2 X + 1 √ X 2 + 4 X + 3 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\sqrt{x^2 + 4x + 3}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\left( 2x + 1 \right) dx}{\sqrt{x^2 + 4x + 3}}\]
\[\text{ Consider,} \]
\[2x + 1 = A \frac{d}{dx} \left( x^2 + 4x + 3 \right) + B\]
\[ \Rightarrow 2x + 1 = A \left( 2x + 4 \right) + B\]
\[ \Rightarrow 2x + 1 = \left( 2A \right) x + 4A + B\]
\[\text{Equating Coefficients of like terms}\]
\[\text{ 2 A} = 2 \]
\[ \Rightarrow A = 1\]
\[\text{ And }\]
\[4A + B = 1\]
\[ \Rightarrow 4 + B = 1\]
\[ \Rightarrow B = - 3\]
\[ \therefore I = \int\left( \frac{2x + 4 - 3}{\sqrt{x^2 + 4x + 3}} \right)dx\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{x^2 + 4x + 4 - 4 + 3}}\]
\[ = \int\frac{\left( 2x + 4 \right) dx}{\sqrt{x^2 + 4x + 3}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[\text{ Let x}^2 + 4x + 3 = t\]
\[ \Rightarrow \left( 2x + 4 \right) dx = dt\]
\[\text{ Then,} \]
\[I = \int\frac{dt}{\sqrt{t}} - 3\int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \int t^{- \frac{1}{2}} dt - 3 \int\frac{dx}{\sqrt{\left( x + 2 \right)^2 - 1^2}}\]
\[ = \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] - 3 \text{ log }\left| x + 2 + \sqrt{\left( x + 2 \right)^2 - 1} \right| + C\]
\[ = 2\sqrt{t} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]
\[ = 2\sqrt{x^2 + 4x + 3} - 3 \text{ log} \left| x + 2 + \sqrt{x^2 + 4x + 3} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ १११]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 15 | पृष्ठ १११

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{1 - \cos 2x}{1 + \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

\[\int\frac{\cos x}{\cos \left( x - a \right)} dx\] 

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{2 \cos 2x + \sec^2 x}{\sin 2x + \tan x - 5} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int 5^{5^{5^x}} 5^{5^x} 5^x dx\]

\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫  sec^6   x  tan    x   dx `

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int \cos^3 (3x)\ dx\]

\[\int \tan^3 x\ dx\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×