हिंदी

∫ Cot 6 X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \cot^6 x \text{ dx }\]
योग

उत्तर

∫ cot6 x dx
= ∫ cot4 x . (cosec2 – 1) dx
= ∫ cot4 x × cosec2 x dx – ​∫ cot4 x dx 

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ​∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ cot2 x dx

= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx + ​∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx

First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ​∫ cot2 x . cosec2 x dx
Let cot x = t

⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ ​t4 dt + ​∫ t2 dt

\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]

Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
   = – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2

\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C_1 + C_2\]
\[- \frac{1}{5} \cot^5 x + \frac{1}{3} \cot^3 x - \cot x - x + C \left[ \therefore C = C_1 + C_2 \right]\]
shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.11 [पृष्ठ ६९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.11 | Q 12 | पृष्ठ ६९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

If f' (x) = x − \[\frac{1}{x^2}\]  and  f (1)  \[\frac{1}{2},    find  f(x)\]

 


If f' (x) = x + bf(1) = 5, f(2) = 13, find f(x)


\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int\left( \tan^{- 1} x^2 \right) x\ dx\]

\[\int\frac{x^2 \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]


\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int \sec^4 x\ dx\]


\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

\[\int e^x \frac{\left( 1 - x \right)^2}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×