Advertisements
Advertisements
प्रश्न
उत्तर
∫ cot6 x dx
= ∫ cot4 x . (cosec2 x – 1) dx
= ∫ cot4 x × cosec2 x dx – ∫ cot4 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cot2 x dx
= ∫ cot4 x – cosec2 x dx – ∫ (cosec2 x – 1) cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ cot2 x dx
= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx + ∫ (cosec2 x – 1) dx
Now, let I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
And I2= ∫ (cosec2 x – 1) dx
First we integrate I1
I1= ∫ cot4 x . cosec2 x dx – ∫ cot2 x . cosec2 x dx
Let cot x = t
⇒ –cosec2 x dx = dt
⇒ cosec2 dx = – dt
I1=– ∫ t4 dt + ∫ t2 dt
\[= \frac{- t^5}{5} + \frac{t^3}{3} + C_1 \]
\[ = - \frac{\cot^5 x}{5} + \frac{\cot^3 x}{3} + C_1\]
Now we integrate I2
I2= ∫ (cosec2 x – 1) dx
= – cot x – x + C1
Now, ∫ cot6 x dx=I1 + I2
APPEARS IN
संबंधित प्रश्न
If f' (x) = x − \[\frac{1}{x^2}\] and f (1) \[\frac{1}{2}, find f(x)\]
If f' (x) = x + b, f(1) = 5, f(2) = 13, find f(x)
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\sqrt{\frac{1 - x}{x}} \text{ dx}\]
\[\int \sec^4 x\ dx\]