Advertisements
Advertisements
प्रश्न
\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]
योग
उत्तर
\[\text{Let I} = \int\frac{e^{3x}}{e^{3x} + 1}dx\]
\[\text{Putting }e^{3x} + 1 = t \]
\[ \Rightarrow 3 e^{3x} = \frac{dt}{dx}\]
\[ \Rightarrow dx = \frac{dt}{3 e^{3x}}\]
\[ \therefore I = \int\frac{e^{3x}}{3t\left( e^{3x} \right)}dt\]
\[ = \frac{1}{3}\int\frac{1}{t}dt\]
\[ = \frac{\text{ln }\left| t \right|}{3} + C\]
\[ = \frac{\text{ln} \left| e^{3x} + 1 \right|}{3} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]
\[\int\frac{1 + \cos x}{1 - \cos x} dx\]
\[\int\frac{x^3}{x - 2} dx\]
\[\int\frac{\cos x}{2 + 3 \sin x} dx\]
\[\int\frac{e^{2x}}{1 + e^x} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x^2}{\sqrt{1 - x}} dx\]
\[\int {cosec}^4 \text{ 3x } \text{ dx } \]
\[\int\frac{1}{\sin^3 x \cos^5 x} dx\]
` = ∫1/{sin^3 x cos^ 2x} dx`
\[\int\frac{1}{4 x^2 + 12x + 5} dx\]
\[\int\frac{1}{1 + x - x^2} \text{ dx }\]
\[\int\frac{x}{x^4 - x^2 + 1} dx\]
\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]
\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]
\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]
\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]
\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]
\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]
\[\int\frac{1}{5 + 4 \cos x} dx\]
\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int x^2 \text{ cos x dx }\]
\[\int\cos\sqrt{x}\ dx\]
\[\int x^2 \sin^{- 1} x\ dx\]
\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]
\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]
\[\int e^x \left( \tan x - \log \cos x \right) dx\]
\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]
\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]
\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]
\[\int \cot^5 x\ dx\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]
\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]