हिंदी

∫ 5 X 2 + 20 X + 6 X 3 + 2 X 2 + X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x} dx\]
योग

उत्तर

We have,

\[I = \int\frac{5 x^2 + 20x + 6}{x^3 + 2 x^2 + x}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x^2 + 2x + 1 \right)}\]

\[ = \int\frac{\left( 5 x^2 + 20x + 6 \right) dx}{x \left( x + 1 \right)^2}\]

\[\text{Let }\frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A}{x} + \frac{B}{x + 1} + \frac{C}{\left( x + 1 \right)^2}\]

\[ \Rightarrow \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{A \left( x + 1 \right)^2 + B \left( x \right) \left( x + 1 \right) + C \left( x \right)}{x \left( x + 1 \right)^2}\]

\[ \Rightarrow 5 x^2 + 20x + 6 = A \left( x^2 + 2x + 1 \right) + B \left( x^2 + x \right) + Cx\]

\[ \Rightarrow 5 x^2 + 20x + 6 = \left( A + B \right) x^2 + \left( 2A + B + C \right) x + A\]

\[\text{Equating coefficients of like terms}\]

\[A + B = 5 . . . . . \left( 1 \right)\]

\[2A + B + C = 20 . . . . . \left( 2 \right)\]

\[ A = 6 . . . . . \left( 3 \right)\]

\[\text{Solving (1), (2) and (3), we get}\]

\[A = 6 \])

\[B = - 1\]

\[C = 9\]

\[ \therefore \frac{5 x^2 + 20x + 6}{x \left( x + 1 \right)^2} = \frac{6}{x} - \frac{1}{x + 1} + \frac{9}{\left( x + 1 \right)^2}\]

\[ \Rightarrow I = 6\int\frac{dx}{x} - \int\frac{dx}{x + 1} + 9\int\frac{dx}{\left( x + 1 \right)^2}\]

\[ = 6 \log \left| x \right| - \log \left| x + 1 \right| - \frac{9}{x + 1} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 34 | पृष्ठ १७७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int x^3 \cos x^4 dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

\[\int \sin^7 x  \text{ dx }\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 + 1}} dx\]

\[\int\frac{1}{x^2 + 6x + 13} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{\cos x}{\sqrt{\sin^2 x - 2 \sin x - 3}} dx\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]

\[\int \cos^3 \sqrt{x}\ dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{6x + 5}{\sqrt{6 + x - 2 x^2}} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×