हिंदी

∫ 2 X − 3 ( X 2 − 1 ) ( 2 X + 3 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]
योग

उत्तर

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)}dx\]
\[ = \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}dx\]
\[\text{Let }\frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A}{x - 1} + \frac{B}{x + 1} + \frac{C}{2x + 3}\]
\[ \Rightarrow \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x + 1 \right) \left( 2x + 3 \right) + C \left( x^2 - 1 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)}\]
\[ \Rightarrow 2x - 3 = A \left( x + 1 \right) \left( 2x + 3 \right) + B \left( x - 1 \right) \left( 2x + 3 \right) + C \left( x + 1 \right) \left( x - 1 \right) ...........(1)\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow - 2 - 3 = B \left( - 1 - 1 \right) \left( - 2 + 3 \right)\]
\[ \Rightarrow - 5 = B \left( - 2 \right) \left( 1 \right)\]
\[ \Rightarrow B = \frac{5}{2}\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (1)}\]
\[ \Rightarrow 2 - 3 = A \left( 1 + 1 \right) \left( 2 + 3 \right)\]
\[ \Rightarrow - 1 = A \left( 2 \right) \left( 5 \right)\]
\[ \Rightarrow A = \frac{- 1}{10}\]
\[\text{Putting }2x + 3 = 0\text{ or }x = \frac{- 3}{2}\text{ in eq. (1)}\]
\[ \Rightarrow 2 \times - \frac{3}{2} - 3 = A \times 0 + B \times 0 + C\left( - \frac{3}{2} + 1 \right) \left( \frac{- 3}{2} - 1 \right)\]
\[ \Rightarrow - 6 = C \left( - \frac{1}{2} \right) \left( \frac{- 5}{2} \right)\]
\[ \Rightarrow C = - \frac{24}{5}\]
\[ \therefore \frac{2x - 3}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} = \frac{- 1}{10 \left( x - 1 \right)} + \frac{5}{2 \left( x + 1 \right)} - \frac{24}{5 \left( 2x + 3 \right)}\]
\[ \Rightarrow \int\frac{\left( 2x - 3 \right)}{\left( x - 1 \right) \left( x + 1 \right) \left( 2x + 3 \right)} dx = \frac{- 1}{10}\int\frac{1}{x - 1}dx + \frac{5}{2}\int\frac{1}{x + 1}dx - \frac{24}{5}\int\frac{1}{2x + 3}dx\]
\[ = \frac{- 1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{24}{5} \ln \frac{\left| 2x + 3 \right|}{3} + C\]
\[ = - \frac{1}{10} \ln \left| x - 1 \right| + \frac{5}{2} \ln \left| x + 1 \right| - \frac{12}{5} \ln \left| 2x + 3 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 9 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\frac{\cos^5 x}{\sin x} dx\]

\[\int\frac{\sin \left( \text{log x} \right)}{x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×