हिंदी

∫ X 2 + 1 X ( X 2 − 1 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^2 + 1}{x\left( x^2 - 1 \right)} dx\]
योग

उत्तर

\[\int\frac{\left( x^2 + 1 \right)}{x \left( x^2 - 1 \right)}dx\]
\[ = \int\frac{\left( x^2 + 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}dx\]
\[\text{Let }\frac{x^2 + 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A}{x} + \frac{B}{x - 1} + \frac{C}{x + 1}\]
\[ \Rightarrow \frac{x^2 + 1}{x \left( x - 1 \right) \left( x + 1 \right)} = \frac{A \left( x - 1 \right) \left( x + 1 \right) + B \left( x \right) \left( x + 1 \right) + C \left( x \right) \left( x - 1 \right)}{x \left( x - 1 \right) \left( x + 1 \right)}\]
\[ \Rightarrow x^2 + 1 = A \left( x - 1 \right) \left( x + 1 \right) + B \left( x \right) \left( x + 1 \right) + C \left( x \right) \left( x - 1 \right) .............(1)\]
\[\text{Putting }x - 1 = 0\text{ or }x = 1\text{ in eq. (1)}\]
\[ \Rightarrow 1 + 1 = A \times 0 + B \left( 1 \right) \left( 1 + 1 \right) + C \times 0\]
\[ \Rightarrow B = 1\]
\[\text{Putting x = 0 in eq. (1)}\]
\[ \Rightarrow 0 + 1 = A \left( 0 - 1 \right) \left( 0 + 1 \right)\]
\[ \Rightarrow A = - 1\]
\[\text{Putting }x + 1 = 0\text{ or }x = - 1\text{ in eq. (1)}\]
\[ \Rightarrow \left( - 1 \right)^2 + 1 = A \times 0 + B \times 0 + C\left( - 1 \right) \left( - 1 - 1 \right)\]
\[ \Rightarrow 2 = C \times 2\]
\[ \Rightarrow C = 1\]
\[ \therefore \frac{x^2 + 1}{x \left( x^2 - 1 \right)} = \frac{- 1}{x} + \frac{1}{x - 1} + \frac{1}{x + 1}\]
\[ \Rightarrow \int\frac{\left( x^2 + 1 \right)}{x \left( x^2 - 1 \right)}dx = - \int\frac{1}{x}dx + \int\frac{1}{x - 1}dx + \int\frac{1}{x + 1}dx\]
\[ = - \ln \left| x \right| + \ln \left| x - 1 \right| + \ln \left| x + 1 \right| + C\]
\[ = - \ln \left| x \right| + \ln \left| x^2 - 1 \right| + C\]
\[ = \ln \left| \frac{x^2 - 1}{x} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 8 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{1}{      x      \text{log x } \text{log }\left( \text{log x }\right)} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{\left( \sin x - 2 \cos x \right)\left( 2 \sin x + \cos x \right)} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int2 x^3 e^{x^2} dx\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{1}{x \left( x^4 - 1 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{1 - x^4}dx\]

\[\int\frac{x^2 + 1}{x^4 + x^2 + 1} \text{  dx }\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left\{ f\left( x \right) + f'\left( x \right) \right\} dx =\]
 

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×