Advertisements
Advertisements
प्रश्न
उत्तर
\[\int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx\]
\[\text{ Let} \sin^{- 1} x = \theta\]
\[x = \sin \theta\]
\[dx = \text{ cos θ dθ }\]
\[ \therefore \int \frac{x . \sin^{- 1} x}{\sqrt{1 - x^2}}dx = \int \frac{\left( \sin \theta \right) . \theta}{\sqrt{1 - \sin^2 \theta}} . \text{ cos θ dθ }\]
\[ = \int \frac{\left( \sin \theta \right) . \theta}{\cos \theta} . \text{ cos θ dθ }\]
\[ = \int \theta_I . \sin_{II} \text{ θ dθ }\]
\[ = \theta\int\sin \text{ θ dθ }- \int\left\{ \frac{d}{d\theta}\left( \theta \right)\int\sin \text{ θ dθ }\right\}d\theta\]
\[ = \theta\left( - \cos \theta \right) - \int 1 . \left( - \cos \theta \right) d\theta\]
\[ = - \theta \cos \theta + \sin \theta + C\]
\[ = - \theta \sqrt{1 - \sin^2 \theta} + \sin \theta + C\]
\[ = - \sin^{- 1} x \sqrt{1 - x^2} + x + C \left( \because \sin^{- 1} x = \theta \right)\]
APPEARS IN
संबंधित प्रश्न
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
` = ∫1/{sin^3 x cos^ 2x} dx`
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]