Advertisements
Advertisements
प्रश्न
विकल्प
\[ x + \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 - x \right| + C\]
\[ x + \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 - x \right| + C\]
\[ x - \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 + x \right| + C\]
- \[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]
उत्तर
\[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]
\[\text{Let }I = \int\frac{x^3}{x + 1}dx\]
\[ = \int\frac{x^3 + 1 - 1}{x + 1}dx\]
\[ = \int\left( \frac{x^3 + 1}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( \frac{\left( x + 1 \right)\left( x^2 - x + 1 \right)}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( x^2 - x + 1 - \frac{1}{x + 1} \right)dx\]
\[ = \left( \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| \right) + C\]
\[ = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]
\[\text{Therefore, }\int\frac{x^3}{x + 1}dx = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the following integrals:
` ∫ e^{m sin ^-1 x}/ \sqrt{1-x^2} ` dx
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int \sin^3 \left( 2x + 1 \right) \text{dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`