हिंदी

∫ X 3 X + 1 D X is Equal to - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x^3}{x + 1}dx\] is equal to

विकल्प

  • \[ x + \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 - x \right| + C\]

  • \[ x + \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 - x \right| + C\]

  • \[ x - \frac{x^2}{2} - \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

  • \[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

     

MCQ

उत्तर

\[ x - \frac{x^2}{2} + \frac{x^3}{3} - \log\left| 1 + x \right| + C\]

 

\[\text{Let }I = \int\frac{x^3}{x + 1}dx\]
\[ = \int\frac{x^3 + 1 - 1}{x + 1}dx\]
\[ = \int\left( \frac{x^3 + 1}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( \frac{\left( x + 1 \right)\left( x^2 - x + 1 \right)}{x + 1} - \frac{1}{x + 1} \right)dx\]
\[ = \int\left( x^2 - x + 1 - \frac{1}{x + 1} \right)dx\]
\[ = \left( \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| \right) + C\]
\[ = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]
\[\text{Therefore, }\int\frac{x^3}{x + 1}dx = \frac{x^3}{3} - \frac{x^2}{2} + x - \log\left| x + 1 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २०२]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 34 | पृष्ठ २०२

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 - x^2}\left( 2 + 3 \sin^{- 1} x \right)} dx\]

\[\int\frac{\sin 2x}{\sin 5x \sin 3x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int \cot^5 x  \text{ dx }\]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{5 \cos x + 6}{2 \cos x + \sin x + 3} \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int\frac{1}{x\sqrt{1 + x^3}} \text{ dx}\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{  dx}\]

\[\int\sqrt{\frac{1 - \sqrt{x}}{1 + \sqrt{x}}} \text{ dx}\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


\[\int \sin^3  \left( 2x + 1 \right)  \text{dx}\]


Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×