हिंदी

∫ Tan − 1 √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \tan^{- 1} \sqrt{x}\ dx\]
योग

उत्तर

\[\text{We have}, \]

\[I = \int \tan^{- 1} \sqrt{x}\text{  dx }\]

\[\text{ Putting} \sqrt{x} = \tan \theta\]

\[ \Rightarrow x = \tan^2 \theta\]

\[ \Rightarrow dx =\text{  2   tan  θ  } \sec^2 \text{ θ   dθ }\]

\[ \therefore I = \int \left[ \tan^{- 1} \left( \tan \theta \right)\text{  2   tan  θ } \sec^\text{ 2 }\theta \right] d\theta\]

\[ = 2 \int \theta_i  \text{ tan  θ  sec}^2_{ii}   \text{ θ   dθ }\]

\[ = 2\left[ \theta \times \frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \text{ θ   dθ }}{2} \right] ................\left( \because \int \tan \theta \sec^2 \text{ θ   dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = 2\left[ \theta\frac{\tan^2 \theta}{2} - \frac{1}{2}\int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = \theta \tan^2 \theta - \frac{2 \times \tan \theta}{2} + \frac{2 \times \theta}{2} + C\]

\[ = \tan^{- 1} \sqrt{x} \times x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]

\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०५]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 109 | पृष्ठ २०५

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\sqrt{1 - \cos 2x}} dx\]

\[\int\sqrt{\frac{1 - \sin 2x}{1 + \sin 2x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{2x + 3}{\sqrt{x^2 + 4x + 5}} \text{ dx }\]

\[\int\frac{\cos x}{\cos 3x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int x^2 \text{ cos x dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{3 + 4x - x^2}{\left( x + 2 \right) \left( x - 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

Write the anti-derivative of  \[\left( 3\sqrt{x} + \frac{1}{\sqrt{x}} \right) .\]


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×