Advertisements
Advertisements
Question
Solution
\[\text{We have}, \]
\[I = \int \tan^{- 1} \sqrt{x}\text{ dx }\]
\[\text{ Putting} \sqrt{x} = \tan \theta\]
\[ \Rightarrow x = \tan^2 \theta\]
\[ \Rightarrow dx =\text{ 2 tan θ } \sec^2 \text{ θ dθ }\]
\[ \therefore I = \int \left[ \tan^{- 1} \left( \tan \theta \right)\text{ 2 tan θ } \sec^\text{ 2 }\theta \right] d\theta\]
\[ = 2 \int \theta_i \text{ tan θ sec}^2_{ii} \text{ θ dθ }\]
\[ = 2\left[ \theta \times \frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \text{ θ dθ }}{2} \right] ................\left( \because \int \tan \theta \sec^2 \text{ θ dθ } = \frac{\tan^2 \theta}{2} \right)\]
\[ = 2\left[ \theta\frac{\tan^2 \theta}{2} - \frac{1}{2}\int\left( \sec^2 \theta - 1 \right)d\theta \right]\]
\[ = \theta \tan^2 \theta - \frac{2 \times \tan \theta}{2} + \frac{2 \times \theta}{2} + C\]
\[ = \tan^{- 1} \sqrt{x} \times x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]
\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]
APPEARS IN
RELATED QUESTIONS
\[\int\sqrt{x}\left( 3 - 5x \right) dx\]
If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f