English

∫ Tan − 1 √ X D X - Mathematics

Advertisements
Advertisements

Question

\[\int \tan^{- 1} \sqrt{x}\ dx\]
Sum

Solution

\[\text{We have}, \]

\[I = \int \tan^{- 1} \sqrt{x}\text{  dx }\]

\[\text{ Putting} \sqrt{x} = \tan \theta\]

\[ \Rightarrow x = \tan^2 \theta\]

\[ \Rightarrow dx =\text{  2   tan  θ  } \sec^2 \text{ θ   dθ }\]

\[ \therefore I = \int \left[ \tan^{- 1} \left( \tan \theta \right)\text{  2   tan  θ } \sec^\text{ 2 }\theta \right] d\theta\]

\[ = 2 \int \theta_i  \text{ tan  θ  sec}^2_{ii}   \text{ θ   dθ }\]

\[ = 2\left[ \theta \times \frac{\tan^2 \theta}{2} - \int1\frac{\tan^2 \text{ θ   dθ }}{2} \right] ................\left( \because \int \tan \theta \sec^2 \text{ θ   dθ } = \frac{\tan^2 \theta}{2} \right)\]

\[ = 2\left[ \theta\frac{\tan^2 \theta}{2} - \frac{1}{2}\int\left( \sec^2 \theta - 1 \right)d\theta \right]\]

\[ = \theta \tan^2 \theta - \frac{2 \times \tan \theta}{2} + \frac{2 \times \theta}{2} + C\]

\[ = \tan^{- 1} \sqrt{x} \times x - \sqrt{x} + \tan^{- 1} \sqrt{x} + C\]

\[ = \left( x + 1 \right) \tan^{- 1} \sqrt{x} - \sqrt{x} + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 205]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 109 | Page 205

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{1}{1 + \cos 2x} dx\]

\[\int \cot^{- 1} \left( \frac{\sin 2x}{1 - \cos 2x} \right) dx\]

If f' (x) = a sin x + b cos x and f' (0) = 4, f(0) = 3, f

\[\left( \frac{\pi}{2} \right)\] = 5, find f(x)
 

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\cos x - \sin x}{1 + \sin 2x} dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \cos^7 x \text{ dx  } \]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{e^x}{\sqrt{16 - e^{2x}}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^3}{x^4 + x^2 + 1}dx\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{6x - 5}{\sqrt{3 x^2 - 5x + 1}} \text{ dx }\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int x e^x \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int \sin^{- 1} \sqrt{\frac{x}{a + x}} \text{ dx }\]

\[\int\sqrt{x^2 - 2x} \text{ dx}\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{x \left( x^4 + 1 \right)} dx\]

\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{\cos2x - \cos2\theta}{\cos x - \cos\theta}dx\] is equal to 

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×