English

∫ 1 3 x 2 + 13 x − 10 dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{3 x^2 + 13x - 10} \text{ dx }\]
Sum

Solution

\[\int\frac{1}{3 x^2 + 13x - 10}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13}{3}x - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{x^2 + \frac{13 x}{3} + \left( \frac{13}{6} \right)^2 - \left( \frac{13}{6} \right)^2 - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169}{36} - \frac{10}{3}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \frac{169 - 120}{36}}dx\]
\[ = \frac{1}{3}\int\frac{1}{\left( x + \frac{13}{6} \right)^2 - \left( \frac{17}{6} \right)^2}dx\]
\[ = \frac{1}{3} \times \frac{1}{2 \times \frac{17}{6}} \text{ ln } \left| \frac{x + \frac{13}{6} - \frac{17}{6}}{x + \frac{13}{6} + \frac{17}{6}} \right|  .............\left[ \because \int\frac{1}{x^2 - a^2}dx = \frac{1}{2a}\text{ ln }\left| \frac{x - a}{x + a} \right| + C \right]\]
\[ = \frac{1}{17} \text{ ln}\left| \frac{x - \frac{2}{3}}{x + 5} \right| + C\]
\[ = \frac{1}{17} \text{ ln }\left| \frac{3x - 2}{3x + 15} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 203]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 47 | Page 203

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{1}{\sqrt{\left( 1 - x^2 \right)\left\{ 9 + \left( \sin^{- 1} x \right)^2 \right\}}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int x^2 e^{- x} \text{ dx }\]

\[\int \left( \log x \right)^2 \cdot x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int \sin^3 \sqrt{x}\ dx\]

\[\int e^x \left( \frac{1}{x^2} - \frac{2}{x^3} \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{4 x^4 + 3}{\left( x^2 + 2 \right) \left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int \cot^5 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{\cos x}{\frac{1}{4} - \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin x \left( 2 + 3 \cos x \right)} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×