English

∫ X 2 + X + 1 ( X + 1 ) 2 ( X + 2 ) D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]
Sum

Solution

We have,

\[I = \int\frac{\left( x^2 + x + 1 \right)}{\left( x + 1 \right)^2 \left( x + 2 \right)}dx\]
\[\text{Let }\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A}{x + 1} + \frac{B}{\left( x + 1 \right)^2} + \frac{C}{x + 2}\]
\[ \Rightarrow \frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{A\left( x + 1 \right) \left( x + 2 \right) + B\left( x + 2 \right) + C \left( x + 1 \right)^2}{\left( x + 1 \right)^2 \left( x + 2 \right)}\]
\[ \Rightarrow x^2 + x + 1 = A\left( x^2 + x + 2x + 2 \right) + Bx + 2B + C\left( x^2 + 2x + 1 \right)\]
\[ \Rightarrow x^2 + x + 1 = \left( A + C \right) x^2 + \left( 3A + B + 2C \right)x + \left( 2A + 2B + C \right)\]
\[\text{Equating coefficient of like terms} . \]
\[A + C = 1 . . . . . \left( 1 \right)\]
\[3A + B + 2C = 1 . . . . . \left( 2 \right)\]
\[2A + 2B + C = 1 . . . . . \left( 3 \right)\]
\[\text{Solving these three equations we get}\]
\[A = - 2\]
\[B = 1\]
\[C = 3\]
\[\text{Hence, }\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} = \frac{- 2}{x + 1} + \frac{1}{\left( x + 1 \right)^2} + \frac{3}{x + 2}\]
\[ \therefore I = - 2\int\frac{dx}{x + 1} + \int\frac{d}{\left( x + 1 \right)^2} + 3\int\frac{dx}{x + 2}\]
\[ = - 2 \log \left| x + 1 \right| - \frac{1}{x + 1} + 3 \log \left| x + 2 \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.30 [Page 177]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.30 | Q 45 | Page 177

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int \left( 3x + 4 \right)^2 dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\  ∫    x   \text{ e}^{x^2} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{5 x^2 - 2x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{\cos x}{\sqrt{4 - \sin^2 x}} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x + 1}{x^2 + x + 3} dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

\[\int\frac{x}{\left( x^2 + 4 \right) \sqrt{x^2 + 1}} \text{ dx }\]

The value of \[\int\frac{\sin x + \cos x}{\sqrt{1 - \sin 2x}} dx\] is equal to


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \tan^3 x\ dx\]

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sqrt{x^2 - a^2}} \text{ dx }\]

\[\int\sqrt{\text{ cosec  x} - 1} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .


Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×