English

∫ 1 Sin X + Sin 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]
Sum

Solution

\[\text{ Let I } = \int\frac{1}{\sin x + \sin 2x}dx\]

\[ = \int\frac{1}{\sin x + 2 \sin x \cos x}dx\]

\[ = \int\frac{1}{\sin x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\sin^2 x \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\sin x}{\left( 1 - \cos^2 x \right) \left( 1 + 2 \cos x \right)}dx\]

\[ = \int\frac{\text{ sin  x  dx }}{\left( 1 - \cos x \right) \left( 1 + \cos x \right) \left( 1 + 2 \cos x \right)}\]

\[\text{ Putting  cos  x } = t\]

\[ \Rightarrow - \text{ sin  x  dx } = dt\]

\[ \Rightarrow \text{ sin  x  dx } = - dt\]

\[\therefore I = - \int\frac{1}{\left( 1 - t \right) \left( 1 + t \right) \left( 1 + 2t \right)}dt\]
\[ = \int\frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)}dt\]
\[ \therefore \frac{1}{\left( t - 1 \right) \left( t + 1 \right) \left( 2t + 1 \right)} = \frac{A}{t - 1} + \frac{B}{t + 1} + \frac{C}{2t + 1}\]
\[ \Rightarrow 1 = A \left( t + 1 \right) \left( 2t + 1 \right) + B \left( t - 1 \right) \left( 2t + 1 \right) + C \left( t - 1 \right) \left( t + 1 \right)\]
\[\text{ Putting  t + 1 = 0 or t = - 1}\]
\[ \Rightarrow 1 = A \times 0 + B \left( - 1 - 1 \right) \left( - 2 + 1 \right) + C \times 0\]
\[ \Rightarrow 1 = B \left( 2 \right)\]
\[ \therefore B = \frac{1}{2}\]
\[\text{ Now, putting t - 1 = 0 or t = 1 }\]
\[ \Rightarrow 1 = A \left( 2 \right) \left( 3 \right) + B \times 0 + C \times 0\]
\[ \therefore A = \frac{1}{6}\]
\[\text{ Now, putting 2t + 1 = 0 or t} = - \frac{1}{2}\]
\[ \Rightarrow 1 = A \times 0 + B \times 0 + C \left( - \frac{1}{2} - 1 \right) \left( - \frac{1}{2} + 1 \right)\]
\[ \Rightarrow 1 = C \left( - \frac{3}{2} \right) \left( \frac{1}{2} \right)\]
\[ \therefore C = - \frac{4}{3}\]
\[ \therefore I = \frac{1}{6}\int\frac{1}{t - 1}dt + \frac{1}{2}\int\frac{1}{t + 1}dt - \frac{4}{3}\int\frac{1}{2t + 1}dt\]
\[ = \frac{1}{6} \text{ ln }\left| t - 1 \right| + \frac{1}{2} \text{ log } \left| t + 1 \right| - \frac{4}{3} \text{ ln} \frac{\left| 2t + 1 \right|}{2} + C\]
\[ = \frac{1}{6} \text{ ln} \left| t - 1 \right| + \frac{1}{2} \text{ ln} \left| t + 1 \right| - \frac{2}{3} \text{ ln } \left| 2t + 1 \right| + C\]
\[ = \frac{1}{6}\text{ ln } \left| \cos x - 1 \right| + \frac{1}{2} \text{ ln} \left| \cos x + 1 \right| - \frac{2}{3} \text{ ln }\left| 2 \cos x + 1 \right| + C \left[ \because t = \cos x \right]\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 67 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{\sqrt{2x + 3} + \sqrt{2x - 3}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{e^x + 1}{e^x + x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int x^2 e^{x^3} \cos \left( e^{x^3} \right) dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} dx\]

 


\[\int\frac{x^2}{\sqrt{3x + 4}} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x - 1}{3 x^2 - 4x + 3} dx\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

`int 1/(cos x - sin x)dx`

\[\int x^2 e^{- x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x^2 \tan^{- 1} x\text{ dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin^2 x}{\cos^4 x} dx =\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cot^4 x\ dx\]

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int x \sec^2 2x\ dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×