English

∫ 1 5 − 4 Sin X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
Sum

Solution

\[\text{  Let I }= \int \frac{1}{5 - 4 \sin x}dx\]
\[\text{ Putting }\ \sin x = \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ \Rightarrow I = \int \frac{1}{5 - 4 \times \frac{2 \tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{5\left( 1 + \tan^2 \frac{x}{2} \right) - 8 \tan \frac{x}{2}}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{5 \tan^2 \left( \frac{x}{2} \right) - 8 \tan \left( \frac{x}{2} \right) + 5}dx\]
\[\text{ Let   tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = 2 \int \frac{dt}{5 t^2 - 8t + 5}\]
\[ = \frac{2}{5}\int \frac{dt}{t^2 - \frac{8}{5}t + 1}\]
\[ = \frac{2}{5}\int \frac{dt}{t^2 - \frac{8}{5}t + \left( \frac{4}{5} \right)^2 - \left( \frac{4}{5} \right)^2 + 1}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( t - \frac{4}{5} \right)^2 - \frac{16}{25} + 1}\]
\[ = \frac{2}{5} \int \frac{dt}{\left( t - \frac{4}{5} \right)^2 + \left( \frac{3}{5} \right)^2}\]
\[ = \frac{2}{5} \times \frac{5}{3} \text{ tan}^{- 1} \left( \frac{t - \frac{4}{5}}{\frac{3}{5}} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5t - 4}{3} \right) + C\]
\[ = \frac{2}{3} \text{ tan}^{- 1} \left( \frac{5 \tan \left( \frac{x}{2} \right) - 4}{3} \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.23 [Page 117]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.23 | Q 2 | Page 117

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\left( 5x + 3 \right) \sqrt{2x - 1} dx\]

\[\int\frac{\sec x \tan x}{3 \sec x + 5} dx\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int {cosec}^4  \text{ 3x } \text{ dx } \]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^2 + 2x + 2} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{1}{\cos 2x + 3 \sin^2 x} dx\]

\[\int x^3 \cos x^2 dx\]

\[\int x\left( \frac{\sec 2x - 1}{\sec 2x + 1} \right) dx\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

\[\int \sin^4 2x\ dx\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{\sin 4x - 2}{1 - \cos 4x} e^{2x} \text{ dx}\]

\[\int\frac{\cot x + \cot^3 x}{1 + \cot^3 x} \text{ dx}\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×