English

∫ 1 2 − 3 Cos 2 X Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]

Sum

Solution

`int 1/[ 2 - 3cos2x] dx`

As `cos 2x = 2cos^x - 1`

So `int 1/[ 2 - 3cos2x] dx = int 1/[2 - 3( 2cos^x - 1) ]`

And multiply and divide by sec2x
Then we have `int  sec^2x/[5sec^2x - 6]` dx

= `int   (sec^2x)/[5( 1 + tan^2x) - 6]`

=  `int (sec^2x dx)/( 5tan^2x - 1)`

Let tan x = t, then sec2x dx = dt

Hence `int [sec^2x]/[ 5tan^2x - 1]` 

= `int dt/[5t^2 - 1]`

= `1/5 int  dt/[t^2 - (1/sqrt5)^2]`

= `1/5 log |[ t - 1/sqrt5 ]/[ t + 1/sqrt5 ]|`

= `1/5 log |[ tan x - 1/sqrt5]/[ tan x + 1/sqrt5 ]| + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 62 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{x^5 + x^{- 2} + 2}{x^2} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \cos^2 \frac{x}{2} dx\]

 


` ∫  {sin 2x} /{a cos^2  x  + b sin^2  x }  ` dx 


\[\int\frac{1 - \sin x}{x + \cos x} dx\]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

` ∫  {1}/{a^2 x^2- b^2}dx`

\[\int\frac{e^{3x}}{4 e^{6x} - 9} dx\]

\[\int\frac{e^x}{\left( 1 + e^x \right)\left( 2 + e^x \right)} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x + 1} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{\cos x \left( \sin x + 2 \cos x \right)} dx\]

 
` ∫  x tan ^2 x dx 

\[\int x \cos^3 x\ dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x^2 + 1 \right) \left( 3 x^2 + 4 \right)} dx\]

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int \tan^4 x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]


\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×