Advertisements
Advertisements
Question
\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]
Solution
`int 1/[ 2 - 3cos2x] dx`
As `cos 2x = 2cos^x - 1`
So `int 1/[ 2 - 3cos2x] dx = int 1/[2 - 3( 2cos^x - 1) ]`
And multiply and divide by sec2x
Then we have `int sec^2x/[5sec^2x - 6]` dx
= `int (sec^2x)/[5( 1 + tan^2x) - 6]`
= `int (sec^2x dx)/( 5tan^2x - 1)`
Let tan x = t, then sec2x dx = dt
Hence `int [sec^2x]/[ 5tan^2x - 1]`
= `int dt/[5t^2 - 1]`
= `1/5 int dt/[t^2 - (1/sqrt5)^2]`
= `1/5 log |[ t - 1/sqrt5 ]/[ t + 1/sqrt5 ]|`
= `1/5 log |[ tan x - 1/sqrt5]/[ tan x + 1/sqrt5 ]| + c`
APPEARS IN
RELATED QUESTIONS
` ∫ {sin 2x} /{a cos^2 x + b sin^2 x } ` dx
\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
\[ \int\left( 1 + x^2 \right) \ \cos 2x \ dx\]
Find : \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\]