English

∫ Log X X 3 Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\log x}{x^3} \text{ dx }\]
Sum

Solution

\[\int\frac{\log x}{x^3}dx\]
\[ = \int \frac{1}{x^3}_{II}\ \log x_I\ dx\]
\[ = \log x\int\frac{1}{x^3}dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^3}dx \right\}dx\]
\[ = \log x\int x^{- 3} dx - \int\frac{1}{x} \times \left( \frac{x^{- 3 + 1}}{- 3 + 1} \right)dx\]
\[ = \log x \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + \frac{1}{2}\int\frac{1}{x^3}dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2}\int x^{- 3} dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2} \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) - \frac{1}{4 x^2} + C\]
\[ = - \frac{1}{4 x^2} \left( 2 \log x + 1 \right) + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 98 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\sin x\sqrt{1 + \cos 2x} dx\]

\[\int \left( e^x + 1 \right)^2 e^x dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{\cos x}{2 + 3 \sin x} dx\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


 ` ∫   1 /{x^{1/3} ( x^{1/3} -1)}   ` dx


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]

\[\int \tan^{- 1} \left( \frac{2x}{1 - x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\left\{ \tan \left( \log x \right) + \sec^2 \left( \log x \right) \right\} dx\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x}{\left( x^2 - a^2 \right) \left( x^2 - b^2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{x^3 - 1}{x^3 + x} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x + 2}} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]


\[\int\sqrt{\frac{x}{1 - x}} dx\]  is equal to


\[\int\frac{e^x - 1}{e^x + 1} \text{ dx}\]

\[\int \tan^4 x\ dx\]

\[\int\frac{1}{1 - x - 4 x^2}\text{  dx }\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]


\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×