Advertisements
Advertisements
Question
Solution
\[\int\frac{\log x}{x^3}dx\]
\[ = \int \frac{1}{x^3}_{II}\ \log x_I\ dx\]
\[ = \log x\int\frac{1}{x^3}dx - \int\left\{ \frac{d}{dx}\left( \log x \right)\int\frac{1}{x^3}dx \right\}dx\]
\[ = \log x\int x^{- 3} dx - \int\frac{1}{x} \times \left( \frac{x^{- 3 + 1}}{- 3 + 1} \right)dx\]
\[ = \log x \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + \frac{1}{2}\int\frac{1}{x^3}dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2}\int x^{- 3} dx\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) + \frac{1}{2} \left[ \frac{x^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \log x \left( - \frac{1}{2 x^2} \right) - \frac{1}{4 x^2} + C\]
\[ = - \frac{1}{4 x^2} \left( 2 \log x + 1 \right) + C\]
APPEARS IN
RELATED QUESTIONS
` = ∫ root (3){ cos^2 x} sin x dx `
` ∫ 1 /{x^{1/3} ( x^{1/3} -1)} ` dx
` ∫ {x-3} /{ x^2 + 2x - 4 } dx `
Write a value of
The primitive of the function \[f\left( x \right) = \left( 1 - \frac{1}{x^2} \right) a^{x + \frac{1}{x}} , a > 0\text{ is}\]
\[\int\sqrt{\frac{x}{1 - x}} dx\] is equal to
\[\int\frac{1 + \sin x}{\sin x \left( 1 + \cos x \right)} \text{ dx }\]
Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .