Advertisements
Advertisements
Question
Solution
` ∫ { sin 8x }/{\sqrt{ 9 + sin^4 4x }} `
\[ \Rightarrow \int\frac{2 \sin \left( 4x \right) \cdot \cos \left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[\text{ let }\sin^2 \left( 4x \right) = t\]
\[ \Rightarrow 2 \text{ sin }\left( \text{ 4x } \right) \cdot \cos 4x \times \text{ 4 dx } = dt\]
\[ \Rightarrow 2 \text{ sin } \left( 4x \right) \cos \left( \text{ 4x }\right) dx = \frac{dt}{4}\]
\[Now, \int\frac{2 \text{ sin }\left( 4x \right) \cdot \text{ cos }\left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[ = \frac{1}{4}\int\frac{dt}{\sqrt{9 + t^2}}\]
\[ = \frac{1}{4}\int\frac{dt}{\sqrt{3^2 + t^2}}\]
\[ = \frac{1}{4} \text{ log }\left| t + \sqrt{3^2 + t^2} \right| + C\]
\[ = \frac{1}{4} \text{ log } \left| \sin^2 4x + \sqrt{9 + \sin^4 4x} \right| + C\]
APPEARS IN
RELATED QUESTIONS
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]