English

∫ Sin 8 X √ 9 + Sin 4 4 X D X - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{\sin 8x}{\sqrt{9 + \sin^4 4x}} dx\]
Sum

Solution

` ∫   {  sin  8x   }/{\sqrt{ 9 + sin^4  4x  }} `
\[ \Rightarrow \int\frac{2 \sin \left( 4x \right) \cdot \cos \left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[\text{ let }\sin^2 \left( 4x \right) = t\]
\[ \Rightarrow 2 \text{ sin }\left( \text{ 4x } \right) \cdot \cos 4x \times \text{ 4 dx } = dt\]
\[ \Rightarrow 2 \text{ sin } \left( 4x \right) \cos \left( \text{ 4x }\right) dx = \frac{dt}{4}\]
\[Now, \int\frac{2 \text{ sin   }\left( 4x \right) \cdot \text{ cos }\left( 4 x \right)}{\sqrt{9 + \left( \sin^2 \left( 4x \right) \right)^2}}dx\]
\[ = \frac{1}{4}\int\frac{dt}{\sqrt{9 + t^2}}\]


\[ = \frac{1}{4}\int\frac{dt}{\sqrt{3^2 + t^2}}\]
\[ = \frac{1}{4} \text{ log }\left| t + \sqrt{3^2 + t^2} \right| + C\]
\[ = \frac{1}{4} \text{ log } \left| \sin^2 4x + \sqrt{9 + \sin^4 4x} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Exercise 19.18 [Page 99]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Exercise 19.18 | Q 8 | Page 99

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{\cos 4x - \cos 2x}{\sin 4x - \sin 2x} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{e^{2x}}{1 + e^x} dx\]

\[\int\left( 2 x^2 + 3 \right) \sqrt{x + 2} \text{ dx  }\]

\[\int\frac{x^2 + 3x + 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{1}{\sqrt{2x - x^2}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int\frac{4 \sin x + 5 \cos x}{5 \sin x + 4 \cos x} \text{ dx }\]

\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

 
` ∫  x tan ^2 x dx 

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

` \int \text{ x} \text{ sec x}^2 \text{  dx  is  equal  to }`

 


\[\int\frac{1}{1 + \tan x} dx =\]

\[\int\frac{\left( \sin^{- 1} x \right)^3}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int\frac{\sin 2x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]

\[\int\sqrt{\frac{1 + x}{x}} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \sec^6 x\ dx\]

\[\int\sqrt{x^2 - a^2} \text{ dx}\]

\[\int\frac{\log \left( 1 - x \right)}{x^2} \text{ dx}\]

\[\int\frac{1}{1 + x + x^2 + x^3} \text{ dx }\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×