English

∫ 5 X + 7 √ ( X − 5 ) ( X − 4 ) Dx - Mathematics

Advertisements
Advertisements

Question

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
Sum
True or False

Solution

\[\text{We have}, \]

\[I = \int\left( \frac{5x + 7}{\sqrt{\left( x - 5 \right)\left( x - 4 \right)}} \right) dx\]

\[ = \int\left( \frac{5x + 7}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[\text{ Let  5x + 7 }= A \frac{d}{dx} \left( x^2 - 9x + 20 \right) + B\]

\[ \Rightarrow 5x + 7 = A \left( 2x - 9 \right) + B\]

\[\text{Equating Coefficients of like terms}\]

\[2A = 5\]

\[ \Rightarrow A = \frac{5}{2}\]

\[\text{ And }\]

\[ - 9A + B = 7\]

\[ \Rightarrow - 9 \times \frac{5}{2} + B = 7\]

\[ \Rightarrow B = 7 + \frac{45}{2}\]

\[ \Rightarrow B = \frac{59}{2}\]

\[ \therefore I = \int\left( \frac{\frac{5}{2} \left( 2x - 9 \right) + \frac{59}{2}}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[ = \frac{5}{2}\int\frac{\left( 2x - 9 \right) dx}{\sqrt{x^2 - 9x + 20}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + 20}}\]

\[\text{ Putting x}^2 - 9x + 20 = t\]

\[ \Rightarrow \left( 2x - 9 \right) dx = dt\]

\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + \left( \frac{9}{2} \right)^2 - \left( \frac{9}{2} \right)^2 + 20}}\]

\[ = \frac{5}{2}\int t^{- \frac{1}{2}} \text{ dt }+ \frac{59}{2}\int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \frac{81 + 80}{4}}}\]

\[ = \frac{5}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{59}{2} \int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]

\[ = \frac{5}{2} \times 2\sqrt{t} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]

\[ = 5\sqrt{t} + \frac{59}{2} \text{ log} \left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

\[ = 5\sqrt{x^2 - 9x + 20} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

shaalaa.com
  Is there an error in this question or solution?
Chapter 19: Indefinite Integrals - Revision Excercise [Page 204]

APPEARS IN

RD Sharma Mathematics [English] Class 12
Chapter 19 Indefinite Integrals
Revision Excercise | Q 52 | Page 204

Video TutorialsVIEW ALL [1]

RELATED QUESTIONS

\[\int\left\{ x^2 + e^{\log  x}+ \left( \frac{e}{2} \right)^x \right\} dx\]


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


` ∫  tan 2x tan 3x  tan 5x    dx  `

\[\int\left\{ 1 + \tan x \tan \left( x + \theta \right) \right\} dx\]

\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^5 x  \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^5 x \text{ dx }\]

\[\int x \cos^3 x^2 \sin x^2 \text{ dx }\]

\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1 - 3x}{3 x^2 + 4x + 2}\text{  dx}\]

\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]

\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]

`int 1/(sin x - sqrt3 cos x) dx`

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^3 \cos x^2 dx\]

\[\int x \sin x \cos x\ dx\]

 


\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x + 1 \right)^2} dx\]

\[\int\frac{x}{\left( x + 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\cos x + \sqrt{3} \sin x} \text{ dx } \] is equal to

\[\int\frac{\sin^6 x}{\cos^8 x} dx =\]

\[\int\frac{1}{7 + 5 \cos x} dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{2}{\left( e^x + e^{- x} \right)^2} dx\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \cot^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×