हिंदी

∫ 5 X + 7 √ ( X − 5 ) ( X − 4 ) Dx - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{5x + 7}{\sqrt{\left( x - 5 \right) \left( x - 4 \right)}} \text{ dx }\]
योग
सत्य या असत्य

उत्तर

\[\text{We have}, \]

\[I = \int\left( \frac{5x + 7}{\sqrt{\left( x - 5 \right)\left( x - 4 \right)}} \right) dx\]

\[ = \int\left( \frac{5x + 7}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[\text{ Let  5x + 7 }= A \frac{d}{dx} \left( x^2 - 9x + 20 \right) + B\]

\[ \Rightarrow 5x + 7 = A \left( 2x - 9 \right) + B\]

\[\text{Equating Coefficients of like terms}\]

\[2A = 5\]

\[ \Rightarrow A = \frac{5}{2}\]

\[\text{ And }\]

\[ - 9A + B = 7\]

\[ \Rightarrow - 9 \times \frac{5}{2} + B = 7\]

\[ \Rightarrow B = 7 + \frac{45}{2}\]

\[ \Rightarrow B = \frac{59}{2}\]

\[ \therefore I = \int\left( \frac{\frac{5}{2} \left( 2x - 9 \right) + \frac{59}{2}}{\sqrt{x^2 - 9x + 20}} \right) dx\]

\[ = \frac{5}{2}\int\frac{\left( 2x - 9 \right) dx}{\sqrt{x^2 - 9x + 20}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + 20}}\]

\[\text{ Putting x}^2 - 9x + 20 = t\]

\[ \Rightarrow \left( 2x - 9 \right) dx = dt\]

\[I = \frac{5}{2}\int\frac{dt}{\sqrt{t}} + \frac{59}{2}\int\frac{dx}{\sqrt{x^2 - 9x + \left( \frac{9}{2} \right)^2 - \left( \frac{9}{2} \right)^2 + 20}}\]

\[ = \frac{5}{2}\int t^{- \frac{1}{2}} \text{ dt }+ \frac{59}{2}\int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \frac{81 + 80}{4}}}\]

\[ = \frac{5}{2} \left[ \frac{t^{- \frac{1}{2} + 1}}{- \frac{1}{2} + 1} \right] + \frac{59}{2} \int\frac{dx}{\sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2}}\]

\[ = \frac{5}{2} \times 2\sqrt{t} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{\left( x - \frac{9}{2} \right)^2 - \left( \frac{1}{2} \right)^2} \right| + C\]

\[ = 5\sqrt{t} + \frac{59}{2} \text{ log} \left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

\[ = 5\sqrt{x^2 - 9x + 20} + \frac{59}{2} \text{ log }\left| \left( x - \frac{9}{2} \right) + \sqrt{x^2 - 9x + 20} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Revision Excercise [पृष्ठ २०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Revision Excercise | Q 52 | पृष्ठ २०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int \left( \sqrt{x} - \frac{1}{\sqrt{x}} \right)^2 dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{1}{\sqrt{x + 1} + \sqrt{x}} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\sqrt {e^x- 1}  \text{dx}\] 

\[\int\frac{1}{\sqrt{x} + x} \text{ dx }\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{e^x}{1 + e^{2x}} dx\]

\[\int\frac{1}{\sqrt{5 - 4x - 2 x^2}} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\cos x - \sin x}{\sqrt{8 - \sin2x}}dx\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{3x + 1}{\sqrt{5 - 2x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \cos^2 x + 9 \sin^2 x}\text{  dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{\sin x}{1 + \sin x} \text{ dx }\]

\[\int \sin^4 2x\ dx\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int \tan^4 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right)^3} dx\]

\[\int\frac{1}{\sqrt{3 - 2x - x^2}} \text{ dx}\]

\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int \tan^5 x\ \sec^3 x\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×