हिंदी

∫ X + 1 √ 4 + 5 X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]
योग

उत्तर

\[\text{ Let I } = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[\text{ Also,} x + 1 = A \frac{d}{dx} \left( 4 + 5x - x^2 \right) + B\]
\[x + 1 = A \left( 5 - 2x \right) + B\]
\[x + 1 = \left( - 2A \right) x + 5A + B\]
\[\text{Equating Coefficients of like terms}\]
\[ - 2A = 1\]
\[ \Rightarrow A = - \frac{1}{2}\]
\[\text{ And }\]
\[5A + B = 1\]
\[ \Rightarrow - \frac{5}{2} + B = 1\]
\[B = \frac{7}{2}\]
\[I = \int\frac{\left( x + 1 \right) dx}{\sqrt{4 + 5x - x^2}}\]
\[ = \int\left( \frac{- \frac{1}{2} \left( 5 - 2x \right) + \frac{7}{2}}{\sqrt{4 + 5x - x^2}} \right)dx\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x^2 - 5x \right)}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left[ x^2 - 5x + \left( \frac{5}{2} \right)^2 - \left( \frac{5}{2} \right)^2 \right]}}\]
\[ = - \frac{1}{2}\int\frac{\left( 5 - 2x \right) dx}{\sqrt{4 + 5x - x^2}} + \frac{7}{2}\int\frac{dx}{\sqrt{4 - \left( x - \frac{5}{2} \right)^2 + \frac{25}{4}}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\frac{41}{4} - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2}\int\left( \frac{5 - 2x}{\sqrt{4 + 5x - x^2}} \right)dx + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[\text{ let } 4 + 5x - x^2 = t\]
\[ \Rightarrow \left( 5 - 2x \right) dx = dt\]
\[\text
{Then }, \]
\[I = - \frac{1}{2}\int\frac{dt}{\sqrt{t}} + \frac{7}{2}\int\frac{dx}{\sqrt{\left( \frac{\sqrt{41}}{2} \right)^2 - \left( x - \frac{5}{2} \right)^2}}\]
\[ = - \frac{1}{2} \times 2\sqrt{t} + \frac{7}{2} \times \sin^{- 1} \left( \frac{x - \frac{5}{2}}{\frac{\sqrt{41}}{2}} \right) + C\]
\[ = - \sqrt{t} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]
\[ = - \sqrt{4 + 5x - x^2} + \frac{7}{2} \sin^{- 1} \left( \frac{2x - 5}{\sqrt{41}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.21 [पृष्ठ ११०]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.21 | Q 3 | पृष्ठ ११०

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{1}{1 - \sin x} dx\]

\[\int\frac{e^{3x}}{e^{3x} + 1} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\frac{1 - \sin 2x}{x + \cos^2 x} dx\]

\[\int\frac{\cos^5 x}{\sin x} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \tan^3 \text{2x sec 2x dx}\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

` ∫  tan^3    x   sec^2  x   dx  `

` ∫  tan^5 x   sec ^4 x   dx `

\[\int\frac{x^2 - 1}{x^2 + 4} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\text{ log }\left( x + 1 \right) \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int x^2 \sin^{- 1} x\ dx\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{e^x}{x}\left\{ \text{ x }\left( \log x \right)^2 + 2 \log x \right\} dx\]

\[\int\frac{\sqrt{16 + \left( \log x \right)^2}}{x} \text{ dx}\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\frac{x}{\left( x - 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{\cos x}{\left( 1 - \sin x \right)^3 \left( 2 + \sin x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\frac{x^3}{x + 1}dx\] is equal to

\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\frac{x^3}{\left( 1 + x^2 \right)^2} \text{ dx }\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int \tan^{- 1} \sqrt{x}\ dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×