Advertisements
Advertisements
प्रश्न
` ∫ tan^3 x sec^2 x dx `
योग
उत्तर
` ∫ tan^3 x sec^2 x dx `
Let tan x = t
⇒ sec2 x dx = dt
Now ,` ∫ tan^3 x sec^2 x dx `
`= ∫ t^3.dt `
\[= \frac{t^4}{4} + C\]
`= ∫ t^3.dt `
\[= \frac{t^4}{4} + C\]
\[ = \frac{\tan^4 x}{4} + C\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^6 + 1}{x^2 + 1} dx\]
\[\int \left( \tan x + \cot x \right)^2 dx\]
` ∫ {cosec x} / {"cosec x "- cot x} ` dx
\[\int \tan^{- 1} \left( \frac{\sin 2x}{1 + \cos 2x} \right) dx\]
\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]
\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]
\[\int\frac{2x - 1}{\left( x - 1 \right)^2} dx\]
\[\int \tan^{3/2} x \sec^2 \text{x dx}\]
\[\int\frac{e^{m \tan^{- 1} x}}{1 + x^2} dx\]
\[\int \tan^3 \text{2x sec 2x dx}\]
\[\int\frac{x + \sqrt{x + 1}}{x + 2} dx\]
` ∫ sec^6 x tan x dx `
\[\int \cot^5 \text{ x } {cosec}^4 x\text{ dx }\]
\[\int \sin^5 x \text{ dx }\]
\[\int\frac{x^2 - 1}{x^2 + 4} dx\]
\[\int\frac{1}{\sqrt{7 - 3x - 2 x^2}} dx\]
\[\int\frac{x + 2}{\sqrt{x^2 - 1}} \text{ dx }\]
\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]
\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]
\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx }\]
\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]
\[\int\cos\sqrt{x}\ dx\]
\[\int {cosec}^3 x\ dx\]
\[\int x^3 \tan^{- 1}\text{ x dx }\]
\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]
\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]
\[\int\frac{1}{\left( x - 1 \right) \left( x + 1 \right) \left( x + 2 \right)} dx\]
\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{ dx}\]
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\] then k is equal to
\[\int\frac{1}{1 - \cos x - \sin x} dx =\]
\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}} \text{ dx }\]
\[\int\frac{1}{e^x + e^{- x}} dx\]
\[\int x \sin^5 x^2 \cos x^2 dx\]
\[\int \tan^3 x\ \sec^4 x\ dx\]
\[\int \log_{10} x\ dx\]
Evaluate : \[\int\frac{\cos 2x + 2 \sin^2 x}{\cos^2 x}dx\] .
\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]
Find: `int (sin2x)/sqrt(9 - cos^4x) dx`