Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I } = \int\cos \sqrt{x} dx\]
\[ = \int\frac{\sqrt{x} \cdot \cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int t_{} \cdot \cos \left( t \right)_{} \cdot dt\]
\[\text{Taking t as the first function and cos t as the second function} . \]
\[ = 2 \left[ t \cdot \sin t - \int1 \cdot \text{ sin t dt }\right]\]
\[ = 2 \left[ t \cdot \sin t + \cos t \right] + C . . . . (1) \]
\[\text{Substituting the value of t in eq} \text{ (1) }\]
\[ = 2 \left[ \sqrt{x} \cdot \sin \sqrt{x} + \cos \sqrt{x} \right] + C\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ sin x \sqrt (1-cos 2x) dx `
Integrate the following integrals:
` = ∫ root (3){ cos^2 x} sin x dx `
If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then
\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]
Find: `int (3x +5)/(x^2+3x-18)dx.`