हिंदी

∫ Cos √ X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\cos\sqrt{x}\ dx\]
योग

उत्तर

\[\text{ Let I } = \int\cos \sqrt{x} dx\]
\[ = \int\frac{\sqrt{x} \cdot \cos \sqrt{x}}{\sqrt{x}}dx\]
\[\text{ Let }\sqrt{x} = t\]
\[ \Rightarrow \frac{1}{2\sqrt{x}}dx = dt\]
\[ \Rightarrow \frac{dx}{\sqrt{x}} = 2dt\]
\[ \therefore I = 2\int t_{} \cdot \cos \left( t \right)_{} \cdot dt\]
\[\text{Taking t as the first function and cos t as the second function} . \]
\[ = 2 \left[ t \cdot \sin t - \int1 \cdot \text{ sin t dt }\right]\]
\[ = 2 \left[ t \cdot \sin t + \cos t \right] + C . . . . (1) \]
\[\text{Substituting the value of t in eq} \text{ (1) }\]
\[ = 2 \left[ \sqrt{x} \cdot \sin \sqrt{x} + \cos \sqrt{x} \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 26 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int \left( a \tan x + b \cot x \right)^2 dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\sqrt{x + a} + \sqrt{x + b}} dx\]

\[\int\frac{1}{\text{cos}^2\text{ x }\left( 1 - \text{tan x} \right)^2} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^2 + 3x - 1}{\left( x + 1 \right)^2} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

\[\int \sin^2 \frac{x}{2} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


\[\int\frac{\cos^3 x}{\sqrt{\sin x}} dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int \tan^{3/2} x \sec^2 \text{x dx}\]

\[\int\frac{1}{1 + \sqrt{x}} dx\]

\[\int\frac{\text{sin }\left( \text{2 + 3 log x }\right)}{x} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int \sin^3 x \cos^6 x \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{1 - \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{1 - \cot x} dx\]

\[\int\frac{\log x}{x^n}\text{  dx }\]

\[\int x \sin^3 x\ dx\]

\[\int\frac{x^3 \sin^{- 1} x^2}{\sqrt{1 - x^4}} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{1}{x\left( x^n + 1 \right)} dx\]

\[\int\frac{2 x^2 + 7x - 3}{x^2 \left( 2x + 1 \right)} dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \sqrt{x + 2}}\text{  dx}\]

If \[\int\frac{1}{5 + 4 \sin x} dx = A \tan^{- 1} \left( B \tan\frac{x}{2} + \frac{4}{3} \right) + C,\] then


\[\int\frac{1}{\sin^4 x + \cos^4 x} \text{ dx}\]


\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{4 x^2 + 5x + 6} \text{ dx}\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx}\]

Find: `int (3x +5)/(x^2+3x-18)dx.`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×