हिंदी

∫ ( 2 X − 3 ) 5 + √ 3 X + 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]
योग

उत्तर

\[\int\left[ \left( 2x - 3 \right)^5 + \sqrt{3x + 2} \right]dx\]
\[ = \int \left( 2x - 3 \right)^5 dx + \int \left( 3x + 2 \right)^\frac{1}{2} dx\]
\[ = \frac{\left( 2x - 3 \right)^{5 + 1}}{2\left( 5 + 1 \right)} + \frac{\left( 3x + 2 \right)^\frac{1}{2} + 1}{3\left( \frac{1}{2} + 1 \right)} + C\]
\[ = \frac{\left( 2x - 3 \right)^6}{12} + \frac{2}{9} \left( 3x + 2 \right)^\frac{3}{2} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.03 [पृष्ठ २३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.03 | Q 1 | पृष्ठ २३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int \cos^2 \text{nx dx}\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

`  =  ∫ root (3){ cos^2 x}  sin x   dx `


` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int\frac{e^{2x}}{1 + e^x} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{1}{\sqrt{a^2 - b^2 x^2}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{x^{2/3} \sqrt{x^{2/3} - 4}} dx\]

` ∫  {x-3} /{ x^2 + 2x - 4 } dx `


\[\int\frac{5x + 3}{\sqrt{x^2 + 4x + 10}} \text{ dx }\]

\[\int x e^{2x} \text{ dx }\]

\[\int x^2 \text{ cos x dx }\]

\[\int x \text{ sin 2x dx }\]

\[\int\left( x + 1 \right) \text{ e}^x \text{ log } \left( x e^x \right) dx\]

\[\int \sin^{- 1} \left( 3x - 4 x^3 \right) \text{ dx }\]

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int\left( e^\text{log  x} + \sin x \right) \text{ cos x dx }\]


\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int x \cos^3 x\ dx\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int x\sqrt{x^2 + x} \text{  dx }\]

\[\int\frac{x^2 + 6x - 8}{x^3 - 4x} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\sin x + \sin 2x} dx\]

\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]

If \[\int\frac{2^{1/x}}{x^2} dx = k 2^{1/x} + C,\]  then k is equal to


\[\int e^x \left( 1 - \cot x + \cot^2 x \right) dx =\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int\frac{\sin x}{3 + 4 \cos^2 x} dx\]

\[\int \cos^3 (3x)\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\frac{1 + x^2}{\sqrt{1 - x^2}} \text{ dx }\]

\[\int x\sqrt{\frac{1 - x}{1 + x}} \text{ dx }\]

\[\int\frac{\sin x + \cos x}{\sin^4 x + \cos^4 x} \text{ dx }\]

\[\int x^2 \tan^{- 1} x\ dx\]

\[\int\frac{x^2 + x + 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×