हिंदी

∫ ( X − 2 ) √ 2 X 2 − 6 X + 5 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]
योग

उत्तर

\[\text{ Let I }= \int \left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Also, } x - 2 = \lambda\frac{d}{dx}\left( 2 x^2 - 6x + 5 \right) + \mu\]

\[ \Rightarrow x - 2 = \left( 4\lambda \right)x + \mu - 6\lambda\]

\[\text{Equating the coefficient of like terms}\]

\[4\lambda = 1\]

\[ \Rightarrow \lambda = \frac{1}{4}\]

\[\text{ And }\]

\[\mu - 6\lambda = - 2\]

\[ \Rightarrow \mu - 6 \times \frac{1}{4} = - 2\]

\[ \Rightarrow \mu = - 2 + \frac{3}{2} = - \frac{1}{2}\]

\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x - 6 \right) - \frac{1}{2} \right] \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[ = \frac{1}{4} \int \left( 4x - 6 \right) \sqrt{2 x^2 - 6x + 5} dx - \frac{1}{2}\int\sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\text{ Let 2 x }^2 - 6x + 5 = t\]

\[ \Rightarrow \left( 4x - 6 \right)dx = dt\]

\[ \therefore I = \frac{1}{4}\int t^\frac{1}{2} \text{ dt }- \frac{1}{2}\int\sqrt{2\left( x^2 - 3x + \frac{5}{2} \right)}\text{  dx }\]

\[ = \frac{1}{4}\int t^\frac{1}{2} - \frac{\sqrt{2}}{2}\int\sqrt{x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] - \frac{1}{\sqrt{2}}\int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}} \int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9 + 10}{4}} \text{  dx }\]

\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}}\int\sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} \text{  dx }\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \left( \frac{x - \frac{3}{2}}{2} \right) \sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} + \frac{1}{8}\text{ log }\left| \left( x - \frac{3}{2} \right) + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \frac{2x - 3}{4} \sqrt{x^2 - 3x + \frac{5}{2}} + \frac{1}{8}\text{ log} \left| \frac{2x - 3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 6 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{\cos x}{1 + \cos x} dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`∫     cos ^4  2x   dx `


\[\int \sin^2\text{ b x dx}\]

Integrate the following integrals:

\[\int\text { sin  x  cos  2x     sin 3x   dx}\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} dx\]

\[\int\frac{1}{\sqrt{\left( 2 - x \right)^2 - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{x}{\sqrt{x^2 + 6x + 10}} \text{ dx }\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\cos\sqrt{x}\ dx\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\frac{x^2 + 1}{\left( x - 2 \right)^2 \left( x + 3 \right)} dx\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{1}{\left( \sin^{- 1} x \right) \sqrt{1 - x^2}} \text{ dx} \]

\[\int \tan^5 x\ dx\]

\[\int\frac{1}{x^2 + 4x - 5} \text{ dx }\]

\[\int\sqrt{3 x^2 + 4x + 1}\text{  dx }\]

\[\int e^{2x} \left( \frac{1 + \sin 2x}{1 + \cos 2x} \right) dx\]

\[\int\frac{e^{m \tan^{- 1} x}}{\left( 1 + x^2 \right)^{3/2}} \text{ dx}\]

\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×