Advertisements
Advertisements
प्रश्न
उत्तर
\[\text{ Let I }= \int \left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\text{ Also, } x - 2 = \lambda\frac{d}{dx}\left( 2 x^2 - 6x + 5 \right) + \mu\]
\[ \Rightarrow x - 2 = \left( 4\lambda \right)x + \mu - 6\lambda\]
\[\text{Equating the coefficient of like terms}\]
\[4\lambda = 1\]
\[ \Rightarrow \lambda = \frac{1}{4}\]
\[\text{ And }\]
\[\mu - 6\lambda = - 2\]
\[ \Rightarrow \mu - 6 \times \frac{1}{4} = - 2\]
\[ \Rightarrow \mu = - 2 + \frac{3}{2} = - \frac{1}{2}\]
\[ \therefore I = \int \left[ \frac{1}{4}\left( 4x - 6 \right) - \frac{1}{2} \right] \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[ = \frac{1}{4} \int \left( 4x - 6 \right) \sqrt{2 x^2 - 6x + 5} dx - \frac{1}{2}\int\sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\text{ Let 2 x }^2 - 6x + 5 = t\]
\[ \Rightarrow \left( 4x - 6 \right)dx = dt\]
\[ \therefore I = \frac{1}{4}\int t^\frac{1}{2} \text{ dt }- \frac{1}{2}\int\sqrt{2\left( x^2 - 3x + \frac{5}{2} \right)}\text{ dx }\]
\[ = \frac{1}{4}\int t^\frac{1}{2} - \frac{\sqrt{2}}{2}\int\sqrt{x^2 - 3x + \left( \frac{3}{2} \right)^2 - \left( \frac{3}{2} \right)^2 + \frac{5}{2}} \text{ dx }\]
\[ = \frac{1}{4}\left[ \frac{t^\frac{3}{2}}{\frac{3}{2}} \right] - \frac{1}{\sqrt{2}}\int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9}{4} + \frac{5}{2}} \text{ dx }\]
\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}} \int \sqrt{\left( x - \frac{3}{2} \right)^2 - \frac{9 + 10}{4}} \text{ dx }\]
\[ = \frac{1}{6} t^\frac{3}{2} - \frac{1}{\sqrt{2}}\int\sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} \text{ dx }\]
\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \left( \frac{x - \frac{3}{2}}{2} \right) \sqrt{\left( x - \frac{3}{2} \right)^2 + \left( \frac{1}{2} \right)^2} + \frac{1}{8}\text{ log }\left| \left( x - \frac{3}{2} \right) + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]
\[ = \frac{1}{6} \left( 2 x^2 - 6x + 5 \right)^\frac{3}{2} - \frac{1}{\sqrt{2}} \left[ \frac{2x - 3}{4} \sqrt{x^2 - 3x + \frac{5}{2}} + \frac{1}{8}\text{ log} \left| \frac{2x - 3}{2} + \sqrt{x^2 - 3x + \frac{5}{2}} \right| \right] + C\]
APPEARS IN
संबंधित प्रश्न
\[\int \tan^2 \left( 2x - 3 \right) dx\]
`∫ cos ^4 2x dx `
Integrate the following integrals:
\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]
Write a value of
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{5 x^4 + 12 x^3 + 7 x^2}{x^2 + x} dx\]