हिंदी

∫ ( X + 1 ) √ X 2 + X + 1 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]
योग

उत्तर

\[\text{ Let I } = \int \left( x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\text{ Also,} x + 1 = \lambda\frac{d}{dx} \left( x^2 + x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \lambda\left( 2x + 1 \right) + \mu\]

\[ \Rightarrow x + 1 = \left( 2\lambda \right)x + \lambda + \mu\]

\[\text{Equating coefficient of like terms}\]

\[2\lambda = 1 \]

\[ \Rightarrow \lambda = \frac{1}{2}\]

\[\text{ And }\]

\[\lambda + \mu = 1\]

\[ \Rightarrow \frac{1}{2} + \mu = 1\]

\[ \therefore \mu = \frac{1}{2}\]

\[ \therefore I = \frac{1}{2}\int \left( 2x + 1 \right) \sqrt{x^2 + x + 1}\text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{x^2 + x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 + 1} \text{  dx }\]

\[ = \frac{1}{2}\int\left( 2x + 1 \right) \sqrt{x^2 + x + 1} \text{  dx }+ \frac{1}{2}\int\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} dx\]

\[\text{ Let x}^2 + x + 1 = t\]

\[ \Rightarrow \left( 2x + 1 \right)dx = dt\]

\[\text{ Then },\]

\[I = \frac{1}{2}\int\sqrt{t} \text{ dt} + \frac{1}{2}\left[ \frac{x + \frac{1}{2}}{2}\sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} + \frac{3}{8}\text{ log  }\left| \left( x + \frac{1}{2} \right) + \sqrt{\left( x + \frac{1}{2} \right)^2 + \left( \frac{\sqrt{3}}{2} \right)^2} \right| \right] + C\]
\[ = \frac{1}{2} \times \frac{2}{3} t^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]
\[ = \frac{1}{3} \left( x^2 + x + 1 \right)^\frac{3}{2} + \frac{1}{2}\left[ \left( \frac{2x + 1}{4} \right) \sqrt{x^2 + x + 1} + \frac{3}{8}\text{ log }\left| \left( x + \frac{1}{2} \right) + \sqrt{x^2 + x + 1} \right| \right] + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 7 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 2 - 3x \right) \left( 3 + 2x \right) \left( 1 - 2x \right) dx\]

\[\int \tan^2 \left( 2x - 3 \right) dx\]


\[\int\text{sin mx }\text{cos nx dx m }\neq n\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1 + \cot x}{x + \log \sin x} dx\]

\[\int\frac{\left( x + 1 \right) e^x}{\sin^2 \left( \text{x e}^x \right)} dx\]

\[\int\frac{x^2}{\sqrt{x - 1}} dx\]

\[\int\frac{1}{2 x^2 - x - 1} dx\]

\[\int\frac{1}{\sqrt{7 - 6x - x^2}} dx\]

\[\int\frac{1}{x\sqrt{4 - 9 \left( \log x \right)^2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{x^2}{x^2 + 6x + 12} \text{ dx }\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

`int 1/(cos x - sin x)dx`

\[\int\frac{1}{1 - \cot x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x\ {cosec}^2 \text{ x }\ \text{ dx }\]


\[\int\frac{x + \sin x}{1 + \cos x} \text{ dx }\]

\[\int \log_{10} x\ dx\]

\[\int x^3 \tan^{- 1}\text{  x dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \sec x \left( 1 + \tan x \right) dx\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( x + 1 \right) \sqrt{2 x^2 + 3} \text{ dx}\]

\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{  dx }\]

\[\int\frac{x^2 + 1}{x^2 - 1} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int \sin^4 2x\ dx\]

\[\int \sin^5 x\ dx\]

\[\int\frac{\sqrt{a} - \sqrt{x}}{1 - \sqrt{ax}}\text{  dx }\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sec^6 x\ dx\]

\[\int\frac{x^2}{x^2 + 7x + 10} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×