Advertisements
Advertisements
प्रश्न
\[\int \sec^6 x\ dx\]
योग
उत्तर
\[\text{ Let I } = \int \sec^6 x\ dx\]
\[ = \int \sec^4 x \cdot \sec^2 x\ dx\]
\[ = \int \left( \sec^2 x \right)^2 \cdot \sec^2 x\ dx\]
\[ = \int \left( 1 + \tan^2 x \right)^2 \sec^2 x\ dx\]
\[\text{ Putting tan x = t}\]
\[ \Rightarrow \text{ sec}^2\text{ x dx} = dt\]
\[ \therefore I = \int \left( 1 + t^2 \right)^2 \cdot dt\]
\[ = \int\left( 1 + t^4 + 2 t^2 \right)dt\]
\[ = \int dt + \int t^4 dt + 2\int t^2 dt\]
\[ = t + \frac{t^5}{5} + \frac{2 t^3}{3} + C\]
\[ = \tan x + \frac{1}{5} \tan^5 x + \frac{2}{3} \tan^3 x + C............... \left[ \because t = \tan x \right]\]
shaalaa.com
क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
APPEARS IN
संबंधित प्रश्न
\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]
\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]
\[\int\frac{\sin^3 x - \cos^3 x}{\sin^2 x \cos^2 x} dx\]
\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]
\[\int\frac{x^3 - 3 x^2 + 5x - 7 + x^2 a^x}{2 x^2} dx\]
Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]
\[\int\sin x\sqrt{1 + \cos 2x} dx\]
\[\int\left( x + 2 \right) \sqrt{3x + 5} \text{dx} \]
\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]
\[\int\frac{1 - \cot x}{1 + \cot x} dx\]
\[\int\frac{\tan x}{\sqrt{\cos x}} dx\]
\[\int\frac{\sin 2x}{\left( a + b \cos 2x \right)^2} dx\]
\[\ \int\ x \left( 1 - x \right)^{23} dx\]
\[\int \sin^3 x \cos^5 x \text{ dx }\]
\[\int\frac{dx}{e^x + e^{- x}}\]
\[\int\frac{3 x^5}{1 + x^{12}} dx\]
\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]
\[\int\frac{x + 1}{x^2 + x + 3} dx\]
\[\int\frac{\left( 3\sin x - 2 \right)\cos x}{13 - \cos^2 x - 7\sin x}dx\]
\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]
\[\int\frac{1}{3 + 2 \sin x + \cos x} \text{ dx }\]
\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
`int 1/(sin x - sqrt3 cos x) dx`
\[\int x \text{ sin 2x dx }\]
\[\int \sin^{- 1} \left( \frac{2x}{1 + x^2} \right) \text{ dx }\]
\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]
\[\int e^x \left( \frac{\sin x \cos x - 1}{\sin^2 x} \right) dx\]
\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]
\[\int\left( 4x + 1 \right) \sqrt{x^2 - x - 2} \text{ dx }\]
\[\int\left( x - 2 \right) \sqrt{2 x^2 - 6x + 5} \text{ dx }\]
\[\int\frac{1}{\sin x \left( 3 + 2 \cos x \right)} dx\]
\[\int\frac{x^2 + 1}{x^4 + 7 x^2 + 1} 2 \text{ dx }\]
\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]
If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]
\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\] is equal to
\[\int\sin x \sin 2x \text{ sin 3x dx }\]
\[\int\frac{\sin x + \cos x}{\sqrt{\sin 2x}} \text{ dx}\]
\[\int\frac{1}{1 + 2 \cos x} \text{ dx }\]
\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]