हिंदी

∫ 1 13 + 3 Cos X + 4 Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{13 + 3 \cos x + 4 \sin x} dx\]
योग

उत्तर

\[\text{  Let I }= \int \frac{1}{13 + 3 \cos x + 4 \sin x}dx\]
\[\text{ Putting cos x }= \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \text{ and sin x }= \frac{2\tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}\]
\[ \therefore I = \int \frac{1}{13 + 3 \left( \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \right) + 4 \times 2\frac{\tan \left( \frac{x}{2} \right)}{1 + \tan^2 \left( \frac{x}{2} \right)}}dx\]
\[ = \int \frac{\left( 1 + \tan^2 \frac{x}{2} \right)}{13\left( 1 + \tan^2 \frac{x}{2} \right) + 3 - 3 \tan^2 \frac{x}{2} + 8 \tan \left( \frac{x}{2} \right)} dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{13 \tan^2 \frac{x}{2} - 3 \tan^2 \frac{x}{2} + 16 + 8 \tan \left( \frac{x}{2} \right)}dx\]
\[ = \int \frac{\sec^2 \frac{x}{2}}{10 \tan^2 \left( \frac{x}{2} \right) + 8 \tan \left( \frac{x}{2} \right) + 16}dx\]
\[\text{ Let tan} \left( \frac{x}{2} \right) = t\]
\[ \Rightarrow \frac{1}{2} \text{ sec}^2 \left( \frac{x}{2} \right)dx = dt\]
\[ \Rightarrow \text{ sec}^2 \left( \frac{x}{2} \right)dx = 2dt\]
\[ \therefore I = \int \frac{2 dt}{10 t^2 + 8t + 16}\]
\[ = \int \frac{dt}{5 t^2 + 4t + 8}\]
\[ = \frac{1}{5} \int \frac{dt}{t^2 + \frac{4}{5}t + \frac{8}{5}}\]
\[ = \frac{1}{5}\int \frac{dt}{t^2 + \frac{4}{5}t + \left( \frac{2}{5} \right)^2 - \left( \frac{2}{5} \right)^2 + \frac{8}{5}}\]


\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 - \frac{4}{25} + \frac{8}{5}}\]
\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 + \frac{- 4 + 40}{25}}\]
\[ = \frac{1}{5}\int \frac{dt}{\left( t + \frac{2}{5} \right)^2 + \left( \frac{6}{5} \right)^2}\]
\[ = \frac{1}{5} \times \frac{5}{6} \tan^{- 1} \left( \frac{t + \frac{2}{5}}{\frac{6}{5}} \right) + C\]
\[ = \frac{1}{6} \tan^{- 1} \left( \frac{5t + 2}{6} \right) + C\]
\[ = \frac{1}{6} \tan^{- 1} \left( \frac{5 \tan \frac{x}{2} + 2}{6} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.23 [पृष्ठ ११७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.23 | Q 7 | पृष्ठ ११७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\sqrt{x}\left( x^3 - \frac{2}{x} \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

\[\int\frac{1}{1 - \cos x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 + \cos 4x}{\cot x - \tan x} dx\]

\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 3}{\left( x - 1 \right)^2} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

` ∫  {sec  x   "cosec " x}/{log  ( tan x) }`  dx


\[\int\frac{\sin 2x}{a^2 + b^2 \sin^2 x} dx\]

\[\int\frac{x + 1}{x \left( x + \log x \right)} dx\]

` ∫    x   {tan^{- 1} x^2}/{1 + x^4} dx`

` ∫   tan   x   sec^4  x   dx  `


\[\int\frac{1}{4 x^2 + 12x + 5} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sin 2x}{\sqrt{\sin^4 x + 4 \sin^2 x - 2}} dx\]

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} dx\]

\[\int\frac{2x - 3}{x^2 + 6x + 13} dx\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int x \sin^3 x\ dx\]

\[\int e^x \left( \cot x - {cosec}^2 x \right) dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\frac{e^x \left( x - 4 \right)}{\left( x - 2 \right)^3} \text{ dx }\]

\[\int\left( 2x + 3 \right) \sqrt{x^2 + 4x + 3} \text{  dx }\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

\[\int\frac{1}{\left( 2 x^2 + 3 \right) \sqrt{x^2 - 4}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{4 x^2 + 4x + 5} dx\]

\[\int\frac{1}{2 - 3 \cos 2x} \text{ dx }\]


\[\int\sqrt{\frac{a + x}{x}}dx\]
 

\[\int\frac{\sin^6 x}{\cos x} \text{ dx }\]

Find :  \[\int\frac{e^x}{\left( 2 + e^x \right)\left( 4 + e^{2x} \right)}dx.\] 

 


\[\int\frac{x + 3}{\left( x + 4 \right)^2} e^x dx =\]


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×