हिंदी

∫ X Sin X ( Sin X X + Cos X . Log X ) D X I S E Q U a L T O (A) Xsin X + C (B) Xsin X Cos X + C (C) ( X Sin X ) 2 2 + C (D) None of These - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int x^{\sin x} \left( \frac{\sin x}{x} + \cos x . \log x \right) dx\] is equal to

विकल्प

  •  xsin x + C

  •  xsin x cos x + C

  • \[\frac{\left( x^{\sin x} \right)^2}{2} + C\]

  • none of these

MCQ

उत्तर

 xsin x + 

\[\text{ Let I } = \int x^{\sin x} \left( \frac{\sin x}{x} + \cos x \cdot \log x \right)dx\]
\[\text{ Putting  x}^{\sin x} = t\]
\[ \Rightarrow \ln \left( x \right)^{\sin x} = \ln t\]
\[ \Rightarrow \sin x \cdot \ln x = \ln t\]
\[ \Rightarrow \left( \sin x \times \frac{1}{x} + \cos x \ln x \right)dx = \frac{1}{t}dt\]
\[ \therefore I = \int t \cdot \frac{dt}{t}\]
\[ = t + C\]
\[ = x^{\sin x} + C .............\left( \because t = x^{\sin x} \right)\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - MCQ [पृष्ठ २००]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
MCQ | Q 5 | पृष्ठ २००

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\left( \frac{m}{x} + \frac{x}{m} + m^x + x^m + mx \right) dx\]

\[\int\frac{5 \cos^3 x + 6 \sin^3 x}{2 \sin^2 x \cos^2 x} dx\]

Write the primitive or anti-derivative of
\[f\left( x \right) = \sqrt{x} + \frac{1}{\sqrt{x}} .\]

 


\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{x + 3}{\left( x + 1 \right)^4} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

\[\int \sin^2 \frac{x}{2} dx\]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

` ∫   tan   x   sec^4  x   dx  `


Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{x^4 - x^2 + 1} dx\]

\[\int\frac{1}{\sqrt{\left( x - \alpha \right)\left( \beta - x \right)}} dx, \left( \beta > \alpha \right)\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{x}{x^2 + 3x + 2} dx\]

\[\int\frac{x + 7}{3 x^2 + 25x + 28}\text{ dx}\]

\[\int\frac{x^3 + x^2 + 2x + 1}{x^2 - x + 1}\text{ dx }\]

\[\int\frac{x + 1}{\sqrt{4 + 5x - x^2}} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{3 + 2 \cos x + 4 \sin x}{2 \sin x + \cos x + 3} \text{ dx }\]

\[\int x^3 \text{ log x dx }\]

\[\int\frac{\sin^{- 1} x}{x^2} \text{ dx }\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{2x - 3}{\left( x^2 - 1 \right) \left( 2x + 3 \right)} dx\]

\[\int\frac{1}{x\left[ 6 \left( \log x \right)^2 + 7 \log x + 2 \right]} dx\]

\[\int\frac{dx}{\left( x^2 + 1 \right) \left( x^2 + 4 \right)}\]

\[\int\frac{x^2 + 9}{x^4 + 81} \text{ dx }\]

 


\[\int\frac{x^9}{\left( 4 x^2 + 1 \right)^6}dx\]  is equal to 

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int x \sin^5 x^2 \cos x^2 dx\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2}{\left( x - 1 \right)^3 \left( x + 1 \right)} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×