Advertisements
Advertisements
प्रश्न
विकल्प
xsin x + C
xsin x cos x + C
\[\frac{\left( x^{\sin x} \right)^2}{2} + C\]
none of these
उत्तर
xsin x + C
\[\text{ Let I } = \int x^{\sin x} \left( \frac{\sin x}{x} + \cos x \cdot \log x \right)dx\]
\[\text{ Putting x}^{\sin x} = t\]
\[ \Rightarrow \ln \left( x \right)^{\sin x} = \ln t\]
\[ \Rightarrow \sin x \cdot \ln x = \ln t\]
\[ \Rightarrow \left( \sin x \times \frac{1}{x} + \cos x \ln x \right)dx = \frac{1}{t}dt\]
\[ \therefore I = \int t \cdot \frac{dt}{t}\]
\[ = t + C\]
\[ = x^{\sin x} + C .............\left( \because t = x^{\sin x} \right)\]
APPEARS IN
संबंधित प्रश्न
\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]
` ∫ tan x sec^4 x dx `
Evaluate the following integrals:
If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then
\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]