हिंदी

∫ 2 X + 1 ( X + 1 ) ( X − 2 ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]
योग

उत्तर

\[\int\frac{\left( 2x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)} dx \]
\[\text{Let }\frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A}{x + 1} + \frac{B}{x - 2} .........(1)\]
\[ \Rightarrow \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{A\left( x - 2 \right) + B\left( x + 1 \right)}{\left( x + 1 \right)\left( x - 2 \right)}\]
\[\text{Then, }\left( 2x + 1 \right) = A\left( x - 2 \right) + B\left( x + 1 \right) ............(2)\]
\[\text{Putting }\left( x - 2 \right) = 0\text{ or }x = 2\text{ in eq. (2) }\]
\[ \Rightarrow 2 \times 2 + 1 = A \times 0 + B\left( 2 + 1 \right)\]
\[ \Rightarrow B = \frac{5}{3}\]
\[\text{Putting }\left( x + 1 \right) = 0\text{ or }x = - 1\text{ in eq. (2)} \]
\[2 \times - 1 + 1 + A\left( - 1 - 2 \right) + B \times 0\]
\[ \Rightarrow - 1 = A\left( - 3 \right)\]
\[ \Rightarrow A = \frac{1}{3}\]
\[\text{Substituting the values of A and B in eq. (1) , we get} \]
\[ \therefore \frac{2x + 1}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\left( x + 1 \right) + \frac{5}{3}\left( x - 2 \right)\]
\[\int\frac{\left( 2x + 1 \right)dx}{\left( x + 1 \right)\left( x - 2 \right)} = \frac{1}{3}\int\frac{1}{x + 1}dx + \frac{5}{3}\int\frac{1}{x - 2}dx\]
\[ = \frac{1}{3} \ln \left| x + 1 \right| + \frac{5}{3} \ln \left| x - 2 \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.30 [पृष्ठ १७६]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.30 | Q 1 | पृष्ठ १७६

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left\{ \sqrt{x}\left( a x^2 + bx + c \right) \right\} dx\]

\[\int\frac{1}{\sqrt{x}}\left( 1 + \frac{1}{x} \right) dx\]

\[\int\frac{\left( x + 1 \right)\left( x - 2 \right)}{\sqrt{x}} dx\]

\[\int \cos^{- 1} \left( \sin x \right) dx\]

\[\int\frac{x + 1}{\sqrt{2x + 3}} dx\]

\[\int\frac{2 - 3x}{\sqrt{1 + 3x}} dx\]

Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int\frac{1}{\left( x + 1 \right)\left( x^2 + 2x + 2 \right)} dx\]

\[\int \sec^4 2x \text{ dx }\]

\[\int \cot^6 x \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{\sin 2x}{\sqrt{\cos^4 x - \sin^2 x + 2}} dx\]

\[\int\frac{x - 1}{\sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{\sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int\frac{1}{5 + 4 \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int\cos\sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( \frac{1 - x^2}{1 + x^2} \right) \text{ dx }\]

\[\int e^x \left( \frac{\sin 4x - 4}{1 - \cos 4x} \right) dx\]

\[\int x\sqrt{x^4 + 1} \text{ dx}\]

\[\int\sqrt{2x - x^2} \text{ dx}\]

\[\int\left( x + 1 \right) \sqrt{x^2 - x + 1} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{\left( x^2 + 1 \right) \left( x^2 + 2 \right)}{\left( x^2 + 3 \right) \left( x^2 + 4 \right)} dx\]

 


\[\int\frac{x^4}{\left( x - 1 \right) \left( x^2 + 1 \right)} dx\]

\[\int\frac{\left( x - 1 \right)^2}{x^4 + x^2 + 1} \text{ dx}\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

Write a value of

\[\int e^{3 \text{ log x}} x^4\text{ dx}\]

\[\int\frac{x + 2}{\left( x + 1 \right)^3} \text{ dx }\]


\[\int\frac{x + 1}{x^2 + 4x + 5} \text{  dx}\]

\[\int \tan^3 x\ \sec^4 x\ dx\]

\[\int\frac{1}{\sec x + cosec x}\text{  dx }\]

\[\int\sqrt{a^2 - x^2}\text{  dx }\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

\[\int\frac{\sqrt{1 - \sin x}}{1 + \cos x} e^{- x/2} \text{ dx}\]

\[\int\frac{x^2 + 1}{x^2 - 5x + 6} \text{ dx }\]
 

Find: `int (sin2x)/sqrt(9 - cos^4x) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×