हिंदी

∫ 1 √ 3 X 2 + 5 X + 7 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]
योग

उत्तर

\[\int\frac{dx}{\sqrt{3 x^2 + 5x + 7}}\]
\[ = \int\frac{dx}{\sqrt{3\left( x^2 + \frac{5}{3}x + \frac{7}{3} \right)}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{x^2 + \frac{5}{3}x + \left( \frac{5}{6} \right)^2 - \left( \frac{5}{6} \right)^2 + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 - \frac{25}{36} + \frac{7}{3}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{- 25 + 84}{36}}}\]


\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}}}\]
\[ = \frac{1}{\sqrt{3}}\int\frac{dx}{\sqrt{\left( x + \frac{5}{6} \right)^2 + \left( \frac{\sqrt{59}}{36} \right)^2}}\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{\left( x + \frac{5}{6} \right)^2 + \frac{59}{36}} \right| + C\]
\[ = \frac{1}{\sqrt{3}} \log \left| x + \frac{5}{6} + \sqrt{x^2 + \frac{5}{3}x + \frac{7}{3}} \right| + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.17 [पृष्ठ ९३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.17 | Q 4 | पृष्ठ ९३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\left( 3x\sqrt{x} + 4\sqrt{x} + 5 \right)dx\]

\[\int\frac{\left( 1 + x \right)^3}{\sqrt{x}} dx\] 

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int \left( \tan x + \cot x \right)^2 dx\]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

\[\int\frac{\left( x^3 + 8 \right)\left( x - 1 \right)}{x^2 - 2x + 4} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{\left( 7x - 5 \right)^3} + \frac{1}{\sqrt{5x - 4}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{3x + 5}{\sqrt{7x + 9}} dx\]

\[\int \sin^2\text{ b x dx}\]

\[\int\sqrt{\frac{1 + \cos 2x}{1 - \cos 2x}} dx\]

\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{- \sin x + 2 \cos x}{2 \sin x + \cos x} dx\]

\[\int\frac{\sec^2 x}{\tan x + 2} dx\]

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

\[\int\frac{x \sin^{- 1} x^2}{\sqrt{1 - x^4}} dx\]

\[\int2x    \sec^3 \left( x^2 + 3 \right) \tan \left( x^2 + 3 \right) dx\]

\[\int\left( \frac{x + 1}{x} \right) \left( x + \log x \right)^2 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

` ∫      tan^5    x   dx `


\[\int \sin^5 x \cos x \text{ dx }\]

\[\int\frac{\left( 1 - x^2 \right)}{x \left( 1 - 2x \right)} \text
{dx\]

\[\int\frac{2}{2 + \sin 2x}\text{ dx }\]

\[\int x \sin x \cos x\ dx\]

 


\[\int \tan^{- 1} \sqrt{\frac{1 - x}{1 + x}} dx\]

\[\int\frac{1}{x \log x \left( 2 + \log x \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

\[\int\frac{1}{\cos x \left( 5 - 4 \sin x \right)} dx\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{x^2 + 1}} \text{ dx }\]

\[\int\frac{x}{4 + x^4} \text{ dx }\] is equal to

If \[\int\frac{\cos 8x + 1}{\tan 2x - \cot 2x} dx\]


\[\int\frac{\cos 2x - 1}{\cos 2x + 1} dx =\]

\[\int\text{ cos x  cos  2x   cos  3x  dx}\]


\[\int\frac{1}{a + b \tan x} \text{ dx }\]

\[\int\frac{1}{1 - 2 \sin x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{\cos^7 x}{\sin x} dx\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×