हिंदी

∫ a B + C E X D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{a}{b + c e^x} dx\]
योग

उत्तर

\[\text{Let I} = \int\frac{a}{b + c e^x}dx\]
 ` "Dividing numerator and denominator by"   e^x `
\[ \Rightarrow I = \int\frac{a e^{- x}}{b e^{- x} + c}dx\]
\[Putting\ e^{- x} = t\]
\[ \Rightarrow - e^{- x} = \frac{dt}{dx}\]
\[ \Rightarrow e^{- x} dx = - dt\]
\[ \therefore I = \int\frac{- a}{bt + c}dt\]
\[ = \frac{- a}{b} \text{ln }\left| bt + c \right| + C \left[ \because \int\frac{1}{ax + b}dx = \frac{1}{a}\text{ln }\left| ax + b \right| + C \right]\]
\[ = \frac{- a}{b} \text{ln} \left| b e^{- x} + c \right| + C \left[ \because t = e^{- x} + C \right]\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.08 [पृष्ठ ४७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.08 | Q 22 | पृष्ठ ४७

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{x^6 + 1}{x^2 + 1} dx\]

\[\int\frac{x^{- 1/3} + \sqrt{x} + 2}{\sqrt[3]{x}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

\[\int\frac{1}{\sqrt{x + 3} - \sqrt{x + 2}} dx\]

\[\int\frac{1}{\sqrt{1 + \cos x}} dx\]

\[\int\frac{1 - \cot x}{1 + \cot x} dx\]

\[\int\sqrt{1 + e^x} .  e^x dx\]

\[\int \sin^5\text{ x }\text{cos x dx}\]

\[\int\left( 4x + 2 \right)\sqrt{x^2 + x + 1}  \text{dx}\]

\[\int\frac{\sin \left( \tan^{- 1} x \right)}{1 + x^2} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

\[\ \int\ x \left( 1 - x \right)^{23} dx\]

 


\[\int\frac{1}{\sqrt{1 + 4 x^2}} dx\]

 


\[\int\frac{x}{\sqrt{4 - x^4}} dx\]

`  ∫ \sqrt{"cosec x"- 1}  dx `

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x^2 + x + 1}{x^2 - x} dx\]

\[\int\frac{x + 2}{\sqrt{x^2 + 2x - 1}} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{1 + 3 \sin^2 x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

`int"x"^"n"."log"  "x"  "dx"`

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int\left( x + 1 \right) \text{ log  x  dx }\]

\[\int x \cos^3 x\ dx\]

\[\int\frac{x^2}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{5 x^2 - 1}{x \left( x - 1 \right) \left( x + 1 \right)} dx\]

\[\int\frac{1}{x^4 + 3 x^2 + 1} \text{ dx }\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} dx\]

\[\int\frac{x}{\left( x - 3 \right) \sqrt{x + 1}} \text{ dx}\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int\frac{x^3}{\sqrt{1 + x^2}}dx = a \left( 1 + x^2 \right)^\frac{3}{2} + b\sqrt{1 + x^2} + C\], then 


\[\int\frac{1}{\sqrt{x} + \sqrt{x + 1}}  \text{ dx }\]


\[\int\frac{1}{e^x + 1} \text{ dx }\]

\[\int\frac{x^3}{\sqrt{x^8 + 4}} \text{ dx }\]


\[\int\frac{1}{5 - 4 \sin x} \text{ dx }\]

\[\int\frac{\log x}{x^3} \text{ dx }\]

\[\int\frac{x}{x^3 - 1} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×