हिंदी

∫ a X 3 + B X X 4 + C 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]
योग

उत्तर

\[\int\frac{\left( a x^3 + bx \right)}{x^4 + c^2}dx\]
\[ = \int\frac{a x^3}{x^4 + c^2}dx + \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[ = I_1 + I_2 \left(\text{ say } \right)\]
\[Where\]
\[ I_1 = \int \frac{a x^3}{x^4 + c^2}dx\ \text{and}\ I_2 = \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[Now, I_1 = \int\frac{a x^3}{x^4 + c^2}dx\]
\[\text{ let x }^4 + c^2 = t\]
\[ \Rightarrow 4 x^3 dx = dt\]
\[ \Rightarrow x^3 dx = \frac{dt}{4}\]
\[ I_1 = \frac{a}{4}\int\frac{dt}{t}\]
\[ = \frac{a}{4} \text{ log }\left| t \right| + C_1 \]
\[ = \frac{a}{4} \text{ log }\left| x^4 + c^2 \right| + C_1 \]
\[Now, I_2 = \int\frac{bx}{\left( x^2 \right)^2 + c^2}dx\]
\[\text{ let x} ^2 = p\]
\[ \Rightarrow \text{ 2x dx } = dp\]
\[ \Rightarrow \text { x dx }= \frac{dp}{2}\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 9 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{2 x^4 + 7 x^3 + 6 x^2}{x^2 + 2x} dx\]

\[\int \left( 2x - 3 \right)^5 + \sqrt{3x + 2}  \text{dx} \]

\[\int\frac{1}{2 - 3x} + \frac{1}{\sqrt{3x - 2}} dx\]

\[\int\frac{1 - \cos x}{1 + \cos x} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


Integrate the following integrals:

\[\int\text{sin 2x  sin 4x    sin 6x  dx} \]

\[\int x^3 \cos x^4 dx\]

\[\int\frac{\cos\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{x}{\sqrt{x^2 + a^2} + \sqrt{x^2 - a^2}} dx\]

\[\int \sin^5 x \text{ dx }\]

\[\int\frac{1}{\sqrt{a^2 + b^2 x^2}} dx\]

\[\int\frac{x^4 + 1}{x^2 + 1} dx\]

\[\int\frac{1}{x^2 - 10x + 34} dx\]

\[\int\frac{3 x^5}{1 + x^{12}} dx\]

\[\int\frac{x}{3 x^4 - 18 x^2 + 11} dx\]

\[\int\frac{1}{\sqrt{16 - 6x - x^2}} dx\]

\[\int\frac{1}{3 + 2 \cos^2 x} \text{ dx }\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{4 \cos x - 1} \text{ dx }\]

\[\int\frac{8 \cot x + 1}{3 \cot x + 2} \text{  dx }\]

` ∫    sin x log  (\text{ cos x ) } dx  `

\[\int\frac{x^2 \tan^{- 1} x}{1 + x^2} \text{ dx }\]

\[\int e^x \left( \tan x - \log \cos x \right) dx\]

\[\int e^x \left( \cot x + \log \sin x \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{x\left( x - 2 \right) \left( x - 4 \right)} dx\]

\[\int\frac{5}{\left( x^2 + 1 \right) \left( x + 2 \right)} dx\]

\[\int\frac{3x + 5}{x^3 - x^2 - x + 1} dx\]

\[\int\frac{3}{\left( 1 - x \right) \left( 1 + x^2 \right)} dx\]

Find \[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)^2}dx\]

If \[\int\frac{\sin^8 x - \cos^8 x}{1 - 2 \sin^2 x \cos^2 x} dx\]


\[\int\left( x - 1 \right) e^{- x} dx\] is equal to

\[\int\frac{1 - x^4}{1 - x} \text{ dx }\]


\[\int\frac{1}{\sqrt{x^2 + a^2}} \text{ dx }\]

\[\int\frac{\sin x}{\sqrt{\cos^2 x - 2 \cos x - 3}} \text{ dx }\]

\[\int\frac{1}{\sin x + \sin 2x} \text{ dx }\]

\[\int\frac{x^2}{\sqrt{1 - x}} \text{ dx }\]

\[\int \sec^{- 1} \sqrt{x}\ dx\]

\[\int \cos^{- 1} \left( 1 - 2 x^2 \right) \text{ dx }\]

Find : \[\int\frac{dx}{\sqrt{3 - 2x - x^2}}\] .


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×