हिंदी

∫ Sin X Log ( Cos X ) D X - Mathematics

Advertisements
Advertisements

प्रश्न

` ∫    sin x log  (\text{ cos x ) } dx  `
योग

उत्तर

 ` \text{ Let I }= ∫    sin x  . log  (\text{ cos x ) } dx  `
\[\text{ Let cos x }= t\]
\[ \Rightarrow - \text{ sin x dx }= dt\]
\[ \Rightarrow \text{ sin x dx }= - dt \]
\[ \therefore I = - \int\text{ log t dt}\]
\[ = - \int 1_{} \cdot \text{ log t dt }\]
\[\text{Taking log t as the first function and 1 as the second function} . \]
\[ = \log t\int \text{ 1 dt }- \int\left\{ \frac{d}{dt}\left( \log t \right)\int1dt \right\}dt\]
\[ = - \left[ \log t \cdot t - \int\frac{1}{t} \times\text{  t dt } \right]\]
\[ = - \left[ \log t \cdot t - t \right] + C\]
\[ = - t\left( \log t - 1 \right) + C . . . . (1) \]
\[\text{Substituting the value of t in eq}   \text{ (1) }\]
\[ = - \cos x\left\{ \text{ log  }\left( \text{ cos x }\right) - 1 \right\} + C\]
\[ = \text{ cos x }\left\{ 1 - \text{ log }\left( \cos x \right) \right\} + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.25 [पृष्ठ १३३]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.25 | Q 20 | पृष्ठ १३३

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\frac{\sin^2 x}{1 + \cos x}   \text{dx} \]

\[\int\frac{\tan x}{\sec x + \tan x} dx\]

` ∫  {cosec x} / {"cosec x "- cot x} ` dx      


\[\int\frac{1}{1 - \sin\frac{x}{2}} dx\]

\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x^3}{x - 2} dx\]

\[\int\frac{2x + 1}{\sqrt{3x + 2}} dx\]

` ∫   sin x  \sqrt (1-cos 2x)    dx `

 


\[\int\frac{a}{b + c e^x} dx\]

\[\int\frac{\left( 1 + \sqrt{x} \right)^2}{\sqrt{x}} dx\]

\[\int\frac{x^2}{\sqrt{1 - x}} dx\]

` ∫  sec^6   x  tan    x   dx `

` ∫      tan^5    x   dx `


` = ∫1/{sin^3 x cos^ 2x} dx`


\[\int\frac{\cos x}{\sin^2 x + 4 \sin x + 5} dx\]

\[\int\frac{1}{x \left( x^6 + 1 \right)} dx\]

\[\int\frac{1}{\sqrt{3 x^2 + 5x + 7}} dx\]

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]

\[\int\frac{2x + 5}{x^2 - x - 2} \text{ dx }\]

\[\int\frac{x + 1}{\sqrt{x^2 + 1}} dx\]

\[\int\frac{1}{p + q \tan x} \text{ dx  }\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\log \left( \log x \right)}{x} dx\]

\[\int {cosec}^3 x\ dx\]

\[\int\frac{x \sin^{- 1} x}{\sqrt{1 - x^2}} dx\]

\[\int e^x \left( \frac{x - 1}{2 x^2} \right) dx\]

\[\int\sqrt{2ax - x^2} \text{ dx}\]

\[\int\left( 2x - 5 \right) \sqrt{2 + 3x - x^2} \text{  dx }\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{\left( x + 1 \right) \sqrt{x^2 + x + 1}} \text{ dx }\]

\[\int \text{cosec}^2 x \text{ cos}^2 \text{  2x  dx} \]

\[\int \sin^4 2x\ dx\]

\[\int \sec^4 x\ dx\]


\[\int\frac{1}{x \sqrt{1 + x^n}} \text{ dx}\]

\[\int\frac{x^5}{\sqrt{1 + x^3}} \text{ dx }\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×