हिंदी

∫ 2 X 2 + X − X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int\frac{2x}{2 + x - x^2} \text{ dx }\]
योग

उत्तर

 

\[\int\frac{\text{ 2x } dx}{\left( 2 + x - x^2 \right)}\]
\[2x = A\frac{d}{dx}\left( 2 + x - x^2 \right) + B\]
\[2x = A \left( 0 + 1 - 2x \right) + B\]
\[2x = \left( - 2 A \right) x + A + B\]

Comparing the Coefficients of like powers of x

\[- 2\text{ A }= 2\]
\[A = - 1\]
\[A + B = 0\]
\[ - 1 + B = 0\]
\[B = 1\]

Now ` ∫  { 2x    dx }/ {(2 + x - x^2 )}`

`=∫   ({-1 ( 1 - 2x ) + 1 } / { -x^2 + x + 2 }) dx`
\[ = - \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx + \int\frac{dx}{- x^2 + x + 2}\]
\[ = - I_1 + I_2 . . . \left( 1 \right) \left( say \right) where\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_1 = \int\left( \frac{1 - 2x}{- x^2 + x + 2} \right)dx\]
\[\text{ let }- x^2 + x + 2 = t\]
\[ \Rightarrow \left( 1 - 2x \right) dx = dt\]
\[ I_1 = \int\frac{dt}{t}\]
\[ I_1 = \text{ log } \left| t \right| + C_1 \]
\[ = \text{ log } \left| 2 + x - x^2 \right| + C_1 . . . \left( 2 \right)\]
\[ I_2 = \int\frac{dx}{- x^2 + x + 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x - 2}\]
\[ I_2 = \int\frac{- dx}{x^2 - x + \left( \frac{1}{2} \right)^2 - \left( \frac{1}{2} \right)^2 - 2}\]
\[ I_2 = \int\frac{- dx}{\left( x - \frac{1}{2} \right)^2 - \left( \frac{3}{2} \right)^2}\]
\[ I_2 = - \frac{1}{2 \times \frac{3}{2}}\text{ log }\left| \frac{x - \frac{1}{2} - \frac{3}{2}}{x - \frac{1}{2} + \frac{3}{2}} \right| + C_2 \]
\[ I_2 = - \frac{1}{3} \text{ log }\left| \frac{x - 2}{x + 1} \right| + C_2 . . . \left( 3 \right)\]
\[\text{ from } \left( 1 \right) \left( 2 \right)\text{ and }\left( 3 \right)\]
\[\int\left( \frac{2x}{2 + x - x^2} \right)dx = - \text{ log } \left| 2 + x - x^2 \right| - \frac{1}{3}\text{ log }\left| \frac{x - 2}{x + 1} \right| + C_1 + C_2 \]
\[ = - \text{ log } \left| 2 + x - x^2 \right| + \frac{1}{3} \log \left| \frac{1 + x}{x - 2} \right| + C\]
\[\text{ where } C = C_1 + C_2\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.19 [पृष्ठ १०४]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.19 | Q 6 | पृष्ठ १०४

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int\sqrt{x}\left( 3 - 5x \right) dx\]

 


\[\int\frac{x^2 + 5x + 2}{x + 2} dx\]


\[\int\frac{x}{\sqrt{x + a} - \sqrt{x + b}}dx\]

`  ∫  sin 4x cos  7x  dx  `

\[\int\frac{\log\left( 1 + \frac{1}{x} \right)}{x \left( 1 + x \right)} dx\]

` ∫   e^{m   sin ^-1  x}/ \sqrt{1-x^2}  ` dx

 


\[\int x^2 \sqrt{x + 2} \text{  dx  }\]

` ∫   tan   x   sec^4  x   dx  `


\[\int \cot^n {cosec}^2 \text{ x dx } , n \neq - 1\]

\[\int \sin^5 x \cos x \text{ dx }\]

\[\int \cos^7 x \text{ dx  } \]

\[\int \sin^3 x \cos^5 x \text{ dx  }\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{x}{\sqrt{x^4 + a^4}} dx\]

\[\int\frac{2x + 5}{\sqrt{x^2 + 2x + 5}} dx\]

\[\int\frac{1}{\sin^2 x + \sin 2x} \text{ dx }\]

\[\int\frac{1}{5 + 7 \cos x + \sin x} dx\]

\[\int\frac{2 \sin x + 3 \cos x}{3 \sin x + 4 \cos x} dx\]

\[\int\frac{\text{ log }\left( x + 2 \right)}{\left( x + 2 \right)^2}  \text{ dx }\]

\[\int x \cos^3 x\ dx\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( \frac{1}{\log x} - \frac{1}{\left( \log x \right)^2} \right) dx\]

\[\int x^2 \sqrt{a^6 - x^6} \text{ dx}\]

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]

\[\int\frac{2x + 1}{\left( x + 1 \right) \left( x - 2 \right)} dx\]

\[\int\frac{x^2 + x - 1}{x^2 + x - 6} dx\]

\[\int\frac{x^3}{\left( x - 1 \right) \left( x - 2 \right) \left( x - 3 \right)} dx\]

\[\int\frac{\sin 2x}{\left( 1 + \sin x \right) \left( 2 + \sin x \right)} dx\]

\[\int\frac{x^2 + x - 1}{\left( x + 1 \right)^2 \left( x + 2 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

Evaluate the following integral:

\[\int\frac{x^2}{\left( x^2 + a^2 \right)\left( x^2 + b^2 \right)}dx\]

\[\int\sqrt{\cot \text{θ} d  } \text{ θ}\]

\[\int\frac{1}{1 - \cos x - \sin x} dx =\]

\[\int e^x \left( \frac{1 - \sin x}{1 - \cos x} \right) dx\]

\[\int \sec^2 x \cos^2 2x \text{ dx }\]

\[\int\sin x \sin 2x \text{ sin  3x  dx }\]


\[\int\frac{1}{\text{ cos }\left( x - a \right) \text{ cos }\left( x - b \right)} \text{ dx }\]

\[\int\frac{1}{4 \sin^2 x + 4 \sin x \cos x + 5 \cos^2 x} \text{ dx }\]


\[\int \left( \sin^{- 1} x \right)^3 dx\]

\[\int\frac{x \sin^{- 1} x}{\left( 1 - x^2 \right)^{3/2}} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×