हिंदी

∫ ( 2 X + 5 ) √ 10 − 4 X − 3 X 2 D X - Mathematics

Advertisements
Advertisements

प्रश्न

\[\int(2x + 5)\sqrt{10 - 4x - 3 x^2}dx\]
योग

उत्तर

\[I = \int\left( 2x + 5 \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let } \left( 2x + 5 \right) = A\frac{d}{dx}\left( 10 - 4x - 3 x^2 \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = A\left( - 4 - 6x \right) + B\]
\[ \Rightarrow \left( 2x + 5 \right) = - 6Ax + \left( B - 4A \right)\]
\[ \Rightarrow 2 = - 6A\text{  and } \left( B - 4A \right) = 5\]
\[ \Rightarrow A = - \frac{1}{3} \text{ and B }= \frac{11}{3}\]

\[\Rightarrow \left( 2x + 5 \right) = - \frac{1}{3}\left( - 4 - 6x \right) + \frac{11}{3}\]
\[ \Rightarrow I = - \frac{1}{3}\int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx + \frac{11}{3}\int\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let I }= - \frac{1}{3} I_1 + \frac{11}{3} I_2 . . . \left( i \right)\]
\[\text{ Now,} \]
\[ I_1 = \int\left( - 4 - 6x \right)\sqrt{10 - 4x - 3 x^2}dx\]
\[\text{ Let }\left( 10 - 4x - 3 x^2 \right) = t, or, \left( - 4 - 6x \right)dx = dt\]
\[ \Rightarrow I_1 = \int\sqrt{t}dt\]
\[ = \frac{2}{3} t^\frac{3}{2} + c_1 \]
\[ \Rightarrow I_1 = \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + c_1\]

\[I_2 = \int\sqrt{\left( 10 - 4x - 3 x^2 \right)}dx\]
\[ = \int\sqrt{3\left( \frac{10}{3} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left( \frac{26}{9} - \frac{4}{9} - \frac{4}{3}x - x^2 \right)}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( \frac{4}{9} + \frac{4}{3}x + x^2 \right) \right]}dx\]
\[ = \sqrt{3}\int\sqrt{\left[ \left( \frac{\sqrt{26}}{3} \right)^2 - \left( x + \frac{2}{3} \right)^2 \right]}dx\]
\[ = \sqrt{3}\sin\left( \frac{x + \frac{2}{3}}{\frac{\sqrt{26}}{3}} \right) + c_2 \]
\[ = \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + c_2\]

Using (i), we get

\[I = - \frac{1}{3} \times \frac{2}{3} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11}{3} \times \sqrt{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]
\[ \therefore I = - \frac{2}{9} \left( 10 - 4x - 3 x^2 \right)^\frac{3}{2} + \frac{11\sqrt{3}}{3}\sin\left( \frac{3x + 2}{\sqrt{26}} \right) + C\]

shaalaa.com
  क्या इस प्रश्न या उत्तर में कोई त्रुटि है?
अध्याय 19: Indefinite Integrals - Exercise 19.29 [पृष्ठ १५९]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
अध्याय 19 Indefinite Integrals
Exercise 19.29 | Q 14 | पृष्ठ १५९

वीडियो ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्न

\[\int \sin^{- 1} \left( \frac{2 \tan x}{1 + \tan^2 x} \right) dx\]

\[\int\frac{e^\sqrt{x} \cos \left( e^\sqrt{x} \right)}{\sqrt{x}} dx\]

\[\int\frac{\sin\sqrt{x}}{\sqrt{x}} dx\]

\[\int\frac{\sin^5 x}{\cos^4 x} \text{ dx }\]

\[\int \sin^4 x \cos^3 x \text{ dx }\]

\[\int \sin^5 x \cos x \text{ dx }\]

Evaluate the following integrals:

\[\int\frac{x^7}{\left( a^2 - x^2 \right)^5}dx\]

\[\int\frac{1}{a^2 - b^2 x^2} dx\]

\[\int\frac{e^x}{e^{2x} + 5 e^x + 6} dx\]

\[\int\frac{\sec^2 x}{\sqrt{4 + \tan^2 x}} dx\]

\[\int\frac{\sin x}{\sqrt{4 \cos^2 x - 1}} dx\]

\[\int\frac{\cos 2x}{\sqrt{\sin^2 2x + 8}} dx\]

\[\int\frac{a x^3 + bx}{x^4 + c^2} dx\]

\[\int\frac{x}{\sqrt{8 + x - x^2}} dx\]


\[\int\frac{1}{2 + \sin x + \cos x} \text{ dx }\]

\[\int\frac{1}{\sin x + \sqrt{3} \cos x} \text{ dx  }\]

\[\int\frac{1}{\sqrt{3} \sin x + \cos x} dx\]

\[\int x \text{ sin 2x dx }\]

\[\int x^2 \sin^2 x\ dx\]

\[\int \cos^{- 1} \left( 4 x^3 - 3x \right) \text{ dx }\]

\[\int x \sin x \cos 2x\ dx\]

\[\int e^x \left( \cos x - \sin x \right) dx\]

\[\int e^x \left[ \sec x + \log \left( \sec x + \tan x \right) \right] dx\]

\[\int e^x \frac{1 + x}{\left( 2 + x \right)^2} \text{ dx }\]

∴\[\int e^{2x} \left( - \sin x + 2 \cos x \right) dx\]

\[\int\left( x + 2 \right) \sqrt{x^2 + x + 1} \text{  dx }\]

\[\int\frac{2x}{\left( x^2 + 1 \right) \left( x^2 + 3 \right)} dx\]

\[\int\frac{1}{\left( x + 1 \right)^2 \left( x^2 + 1 \right)} dx\]

\[\int\frac{1}{\left( x^2 + 1 \right) \left( x^2 + 2 \right)} dx\]

\[\int\frac{x^2 - 1}{x^4 + 1} \text{ dx }\]

\[\int\frac{1}{\left( x - 1 \right) \sqrt{2x + 3}} \text{ dx }\]

\[\int\frac{1}{\left( x^2 + 1 \right) \sqrt{x}} \text{ dx }\]

If \[\int\frac{1}{\left( x + 2 \right)\left( x^2 + 1 \right)}dx = a\log\left| 1 + x^2 \right| + b \tan^{- 1} x + \frac{1}{5}\log\left| x + 2 \right| + C,\] then


\[\int\frac{\left( 2^x + 3^x \right)^2}{6^x} \text{ dx }\] 

\[\int\frac{\sin x - \cos x}{\sqrt{\sin 2x}} \text{ dx }\]
 
 

\[\int\sqrt{\sin x} \cos^3 x\ \text{ dx }\]

\[\int\sqrt{a^2 + x^2} \text{ dx }\]

\[\int\log \left( x + \sqrt{x^2 + a^2} \right) \text{ dx}\]

\[\int\frac{x^2 - 2}{x^5 - x} \text{ dx}\]

Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×